19 research outputs found

    Identification of risk factors for infection after mitral valve surgery through machine learning approaches

    Get PDF
    BackgroundSelecting features related to postoperative infection following cardiac surgery was highly valuable for effective intervention. We used machine learning methods to identify critical perioperative infection-related variables after mitral valve surgery and construct a prediction model.MethodsParticipants comprised 1223 patients who underwent cardiac valvular surgery at eight large centers in China. The ninety-one demographic and perioperative parameters were collected. Random forest (RF) and least absolute shrinkage and selection operator (LASSO) techniques were used to identify postoperative infection-related variables; the Venn diagram determined overlapping variables. The following ML methods: random forest (RF), extreme gradient boosting (XGBoost), Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), AdaBoost, Naive Bayesian (NB), Logistic Regression (LogicR), Neural Networks (nnet) and artificial neural network (ANN) were developed to construct the models. We constructed receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) was calculated to evaluate model performance.ResultsWe identified 47 and 35 variables with RF and LASSO, respectively. Twenty-one overlapping variables were finally selected for model construction: age, weight, hospital stay, total red blood cell (RBC) and total fresh frozen plasma (FFP) transfusions, New York Heart Association (NYHA) class, preoperative creatinine, left ventricular ejection fraction (LVEF), RBC count, platelet (PLT) count, prothrombin time, intraoperative autologous blood, total output, total input, aortic cross-clamp (ACC) time, postoperative white blood cell (WBC) count, aspartate aminotransferase (AST), alanine aminotransferase (ALT), PLT count, hemoglobin (Hb), and LVEF. The prediction models for infection after mitral valve surgery were established based on these variables, and they all showed excellent discrimination performance in the test set (AUC > 0.79).ConclusionsKey features selected by machine learning methods can accurately predict infection after mitral valve surgery, guiding physicians in taking appropriate preventive measures and diminishing the infection risk

    Sox6 Is Necessary for Efficient Erythropoiesis in Adult Mice under Physiological and Anemia-Induced Stress Conditions

    Get PDF
    BACKGROUND: Definitive erythropoiesis is a vital process throughout life. Both its basal activity under physiological conditions and its increased activity under anemia-induced stress conditions are highly stimulated by the hormone erythropoietin. The transcription factor Sox6 was previously shown to enhance fetal erythropoiesis together and beyond erythropoietin signaling, but its importance in adulthood and mechanisms of action remain unknown. We used here Sox6 conditional null mice and molecular assays to address these questions. METHODOLOGY/PRINCIPAL FINDINGS: Sox6fl/flErGFPCre adult mice, which lacked Sox6 in erythroid cells, exhibited compensated anemia, erythroid cell developmental defects, and anisocytotic, short-lived red cells under physiological conditions, proving that Sox6 promotes basal erythropoiesis. Tamoxifen treatment of Sox6fl/flCaggCreER mice induced widespread inactivation of Sox6 in a timely controlled manner and resulted in erythroblast defects before reticulocytosis, demonstrating that impaired erythropoiesis is a primary cause rather than consequence of anemia in the absence of Sox6. Twenty five percent of Sox6fl/flErGFPCre mice died 4 or 5 days after induction of acute anemia with phenylhydrazine. The others recovered slowly. They promptly increased their erythropoietin level and amplified their erythroid progenitor pool, but then exhibited severe erythroblast and reticulocyte defects. Sox6 is thus essential in the maturation phase of stress erythropoiesis that follows the erythropoietin-dependent amplification phase. Sox6 inactivation resulted in upregulation of embryonic globin genes, but embryonic globin chains remained scarce and apparently inconsequential. Sox6 inactivation also resulted in downregulation of erythroid terminal markers, including the Bcl2l1 gene for the anti-apoptotic factor Bcl-xL, and in vitro assays indicated that Sox6 directly upregulates Bcl2l1 downstream of and beyond erythropoietin signaling. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that Sox6 is necessary for efficient erythropoiesis in adult mice under both basal and stress conditions. It is primarily involved in enhancing the survival rate and maturation process of erythroid cells and acts at least in part by upregulating Bcl2l1

    Detection of acute renal allograft rejection by analysis of renal tissue proteomics in rat models of renal transplantation

    No full text
    At present, the diagnosis of renal allograft rejection requires a renal biopsy. Clinical management of renal transplant patients would be improved if rapid, noninvasive and reliable biomarkers of rejection were available. This study is designed to determine whether such protein biomarkers can be found in renal-graft tissue proteomic approach. Orthotopic kidney transplantations were performed using Fisher (F344) or Lewis rats as donors and Lewis rats as recipients. Hence, there were two groups of renal transplant models: one is allograft (from F344 to Lewis rats); another is syngrafts (from Lewis to Lewis rats) serving as control. Renal tissues were collected 3, 7 and 14 days after transplantation. As many as 18 samples were analyzed by 2-D Electrophoresis and mass spectrometry (MALDI-TOF-TOF-MS). Eleven differentially expressed proteins were identified between groups. In conclusion, proteomic technology can detect renal tissue proteins associated with acute renal allograft rejection. Identification of these proteins as diagnostic markers for rejection in patients′ urine or sera may be useful and non-invasive, and these proteins might serve as novel therapeutic targets that also help to improve the understanding of mechanism of renal rejection

    Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy

    No full text
    Extracellular vesicles (EVs) contain the characteristics of their cell of origin and mediate cell-to-cell communication. Platelet-derived extracellular vesicles (PEVs) not only have procoagulant activity but also contain platelet-derived inflammatory factors (CD40L and mtDNA) that mediate inflammatory responses. Studies have shown that platelets are activated during storage to produce large amounts of PEVs, which may have implications for platelet transfusion therapy. Compared to platelets, PEVs have a longer storage time and greater procoagulant activity, making them an ideal alternative to platelets. This review describes the reasons and mechanisms by which PEVs may have a role in blood transfusion therapy

    Neonatal alloimmune thrombocytopenia caused by anti-HPA antibodies in pregnant Chinese women: a study protocol for a multicentre, prospective cohort trial

    No full text
    Abstract Background Neonatal alloimmune thrombocytopenia (NAIT), caused by maternal antibodies raised against alloantigens carried on foetal platelets, is a very common haematological abnormality in newborns worldwide. However, baseline data on NAIT in China are lacking. Therefore, this study seeks to explore the incidence of alloantibody against the human platelet antigen (HPA) in pregnant women and its associations with NAIT in China. Methods A multicentre, prospective cohort study design will be used, and 55,497 pregnant women will be recruited for the first screening of the anti-HPA antibody at 12 to 28 weeks of gestational age. Subjects who are positive in the first screening for the anti-HPA antibody will be included in the exposure group. Re-tests of the antibody titre, antigen-specificity and genotyping of HPA and HLA will be conducted during admission. A ratio of 1:1 paired individuals with the same ethnicity and parity but testing negative for the anti-HPA antibody will be randomly selected to be included in the non-exposure group. NAIT will be diagnosed in the newborns on day one of the birth. The HPA of the neonates in the exposure group will also be genotyped by sequencing. Associations of maternal HLA with the occurrence of the anti-HPA antibody and correlation of the severity of NAIT with the titre of the anti-HPA antibody will be further analysed. Discussion The study is expected to provide baseline data on NAIT in China. Besides, we hope to find out a population who expresses particular HLA molecules has significant higher risk of HPA alloimmunization in Chinese individuals. We also hope to find a Chinese-specific cut-off antibody titre for the prediction of the severity of NAIT and to provide a means to evaluate the necessity of antenatal treatment. Trial registration ClinicalTrials.gov: NCT02934906 (date registered: 13.10.2016)
    corecore