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Background: Selecting features related to postoperative infection following
cardiac surgery was highly valuable for effective intervention. We used machine
learning methods to identify critical perioperative infection-related variables after
mitral valve surgery and construct a prediction model.
Methods: Participants comprised 1223 patients who underwent cardiac valvular
surgery at eight large centers in China. The ninety-one demographic and
perioperative parameters were collected. Random forest (RF) and least absolute
shrinkage and selection operator (LASSO) techniques were used to identify
postoperative infection-related variables; the Venn diagram determined
overlapping variables. The following ML methods: random forest (RF), extreme
gradient boosting (XGBoost), Support Vector Machine (SVM), Gradient Boosting
Decision Tree (GBDT), AdaBoost, Naive Bayesian (NB), Logistic Regression
(LogicR), Neural Networks (nnet) and artificial neural network (ANN) were
developed to construct the models. We constructed receiver operating
characteristic (ROC) curves and the area under the ROC curve (AUC) was
calculated to evaluate model performance.
Results:We identified 47 and 35 variables with RF and LASSO, respectively. Twenty-
one overlapping variables were finally selected for model construction: age,
weight, hospital stay, total red blood cell (RBC) and total fresh frozen plasma
(FFP) transfusions, New York Heart Association (NYHA) class, preoperative
creatinine, left ventricular ejection fraction (LVEF), RBC count, platelet (PLT)
count, prothrombin time, intraoperative autologous blood, total output, total
input, aortic cross-clamp (ACC) time, postoperative white blood cell (WBC)
count, aspartate aminotransferase (AST), alanine aminotransferase (ALT), PLT
count, hemoglobin (Hb), and LVEF. The prediction models for infection after
mitral valve surgery were established based on these variables, and they all
showed excellent discrimination performance in the test set (AUC > 0.79).
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Conclusions: Key features selected by machine learning methods can accurately predict
infection after mitral valve surgery, guiding physicians in taking appropriate preventive
measures and diminishing the infection risk.
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Introduction

Currently, more than one million heart disease patients

worldwide undergo cardiac surgery annually (1). Additionally,

with the aging of the population, senile valvular disease, coronary

heart disease, and myocardial infarction caused by valvular

disease are becoming increasingly common. Surgical treatments,

such as prosthetic heart valve replacement or valve plasty, are

radical treatments for severe heart valve disease (2, 3). Cardiac

valvular surgery is a complex and time-consuming procedure,

and postoperative infection is one of the common complications

(4). Postoperative infections worsen the length of hospital stay

and hospitalization costs, increase the need for antimicrobial

therapy, increase mortality, and decrease the quality of life (5–8).

Moreover, cardiac surgery is increasingly performed in older

adults with more comorbidities. Thus, the incidence of

postoperative infection is expected to increase unless preventive

measures are improved.

The prediction of infection after cardiac surgery is complicated

by its diverse causes. Many patients and surgical-related risk factors

are associated with developing a postoperative infection. Although

cardiac surgery is performed under aseptic conditions, incisions are

susceptible to postoperative infection due to the long duration of

surgery, prolonged use of mechanical ventilation, allogenic blood

transfusions, open cavities, and indwelling catheter drainage. The

current misuse of antibiotics in clinical practice has led to drug

resistance in pathogenic bacteria, further promoting the

development of infections (5, 9, 10). Moreover, although the

relationships between several perioperative factors and

postoperative infection risk have been investigated (11–13), many

questions regarding the overall rate of postoperative infection

development, potential risk factors, and effective preventive

strategies remain unanswered. Therefore, finding key

perioperative variables and predicting postoperative infection in

patients undergoing surgery is greatly valuable in reducing

postoperative infections.

In recent years, machine learning has been extensively applied

in diagnostic imaging, electronic health record (EHR) exploitation,

prediction models, and cancer prognosis (14, 15). Numerous

research demonstrated that machine learning prediction models

presented great accuracy for predicting postoperative

complications (16, 17). Machine learning does not need to rely

on researcher-selected features and linear dependencies;

therefore, it has the potential to characterize better the complex

interactions among risk factors (18). Although an increasing

number of studies have identified perioperative variables that
02
impact clinical outcomes (19), previous studies on risk prediction

after cardiac surgery had relied primarily on traditional statistical

methods, such as logistic regression or linear models, which

typically focus on a relatively small number of clinical variables

(20). Therefore, our study aimed to identify the critical factors

related to postoperative infection after cardiac valvular surgery

and establish a clinical prediction model for postoperative

infection using machine learning methods.
Materials and methods

Data source and study design

This research was a retrospective observational study

conducted between January 2016 and December 2018. Patients

aged 18–75 years who underwent cardiac valvular surgery were

recruited from different regions and different hospitals such as

Fuwai Hospital National Center for Cardiovascular Diseases, Qilu

Hospital of Shandong University, Affiliated Hospital of

Southwest Medical University, Zhejiang Provincial People’s

Hospital, Xiamen Cardiovascular Hospital, Beijing Aerospace

General Hospital, The Third Xiangya Hospital of Central South

University, and The Second Xiangya Hospital of Central South

University. We collected 27 mitral valve replacement cases from

the Second Xiangya Hospital from January 2022 to September

2022 for external verification.

We enrolled patients who underwent mitral valvuloplasty,

mitral valve replacement, and mitral valve replacement combined

with tricuspid valvuloplasty. The exclusion criteria consisted of

patients from had other cardiac surgery such as reoperative

cardiac surgery, coronary artery bypass grafting, emergency

surgery, or atrial septal defect, etc.; had a missing data rate of

>80%; were infected within 30 days before surgery; had a

hematological disease; or had active bleeding or multiple bleeding

trauma were excluded.

This study focused on all infections occurring within 30 days

postoperatively, including surgical site infections (SSIs) and

infections occurring at other sites (e.g., pneumonia; cardiac

device infection; urinary tract infection; mediastinitis; empyema;

endocarditis; infectious myocarditis or pericarditis; Clostridium

difficile colitis, and bloodstream infections). Patients with at least

one infection were labeled “infection”, and those without

infection were labeled “normal”.

This study was approved by the Third Xiangya Hospital’s

Medical Ethics Committee (NCT03885570).
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Data collection

The original clinical data were manually collected from EHR

systems. A total of 91 perioperative variables were collected,

including demographic data (gender, age, height, blood group,

and weight), clinical characteristics (left ventricular dilatation,

atrial fibrillation), perioperative laboratory indicators (RBC count,

WBC count, Hb, hematocrit [Hct], PLT count, total protein,

albumin, globulin, creatinine, prothrombin time [PT], ALT, AST,

fibrinogen, LVEF, international normalized ratio [INR]) and,

operation type, intraoperative data (cardiopulmonary bypass

[CPB] precharge; minimum Hb/Hct/oxygen saturation; crystal/

colloid bolus infusion volume; urine output; blood loss; machine

blood; autologous blood; total input/output; operation time; CPB

time; ACC time), concomitant disease (anemia, hypertension,

diabetes, cerebrovascular disease), and other data (NYHA class,

American Society of Anesthesiologists class). The preoperative

variables were collected within 24 h before the day of surgery

and the postoperative variables were collected occurred 48 h after

the surgery.

We preprocessed and cleaned the raw data, including detecting

typos and out-of-range values and imputing missing values. All

variables with a missing-value rate of >20% were excluded; the

remaining missing values were imputed using a predictive mean-

matching imputation method.

Data were randomly divided, at a 70:30 ratio, into a training

dataset (n = 858) and a testing dataset (n = 365).
RF screening for important variables

The RF model for postoperative infection was generated using

R packages (caret, Boruta, and randomForest) on the training

dataset (n = 858). First, we assessed the mean model error rate

for all variables according to out-of-band data. We set 49 as the

optimal number of nodes and selected 436 as the optimal tree

number in the RF. Then, we established the RF model and

obtained the importance of each variable by the Gini coefficient

method. We selected variables with an importance value greater

than two for subsequent model construction.
LASSO regression screening for important
variables

Given LASSO regression’s outstanding feature selection

capabilities, we also performed LASSO regression on the training

dataset (n = 858) and compared the results to those of the RF

model in a Venn diagram. LASSO is a regression analysis

method used for simultaneous feature selection and

regularization. It adds an L1 norm as a penalty to calculate the

minimum residual sum of squares. Tuning parameter (λ)

selection in the LASSO model used 10-fold cross-validation via

the minimum criteria. When λ is sufficiently large, some

coefficients can be accurately reduced to zero. The curve of the
Frontiers in Cardiovascular Medicine 03
binomial deviance was plotted depending on the log (λ). The

dotted vertical lines represented the optimal value by adopting

the minimum criteria with one standard error (1-SE criteria).

The R package, glmnet, was used for LASSO regression.
ML methods to build a diagnostic model

The ANN model was generated using the neuralnet R package

on the training dataset (n = 858). Before training the neural

network, we filtered and normalized the selected data by the

min-max normalization method. The difference in each variable

between the infected and noninfected groups was calculated.

Then the selected data were assigned values of either 1 or 0

based on whether or not the variable’s value was: >median with

logFC > 0 or < median with logFC < 0. Additionally, we set the

number of hidden layers to one and neurons to five.

Accordingly, the selected variables were inputted into the ANN

model, with one hidden layer with five neurons and two outputs

(normal and infection). The infection classification score was

calculated by multiplying the weight scores and the values of the

important variables. Five-fold cross-validation of the model was

performed using the R package, caret, and the confusion matrix

function was adopted to evaluate model accuracy in the training

(n = 858) and validation (n = 365) datasets. The termination

condition was as follows: the error absolute partial derivative

value was < 0.01. Eight other models were generated using the

train function from the caret R package, and the models of SVM,

LR, Random Forest, XGBoost, GBDT, AdaBoost, and Naive

Bayes, nnet were developed and compared with the proposed

machine learning model.
Model performance evaluation

The AUC was used for the assessment of model performance.

The AUCs of three types of scores (neural infection) were

calculated for the training (n = 858) and validation (n = 365)

datasets using the R package, pROC. The following assessment

parameters were calculated: AUC, accuracy, sensitivity, specificity,

positive predictive value, negative predictive value, and Balanced

accuracy.
Statistical analysis

Data analyses were performed using SPSS (IBM, Build

1.0.0.1126) and R software (version 4.0.4) with the

abovementioned packages. Means and standard deviation (SD)

were used to describe normally distributed data. Moreover, data

were reported as the median and interquartile range (IQR) values

for non-normally distributed data. For descriptive analyses,

the Student’s t-test or rank-sum test was used to evaluate

differences in continuous variables between training and testing

datasets. Fisher’s exact test was used to evaluate differences in
frontiersin.org
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categorical variables. P-values < 0.05 were considered statistically

significant.
Results

Study population and characteristics

Figure 1 shows the patient selection flowchart. The data of

82,220 patients treated between January 2016 and December

2018 were reviewed. After applying the study criteria, 1223

patients were included in the primary analyses. The baseline

characteristics of the participants are presented in Table 1. The

median age of the patients was 52.6 years. Men accounted for

39.9% of the study population, and the average body mass index

was 22.9 kg/m2. Postoperative infections within 30 days after

surgery occurred in 367 (30%) patients, including 15 (1.2%)

patients with SSIs.
FIGURE 1

(A) Scheme showing the study design. (B) Flowchart of participant selection a

Frontiers in Cardiovascular Medicine 04
Feature selection by RF modeling

These patients were randomly divided into a training set ((n =

858) and a testing dataset (n = 365) (Table 2). The results revealed

that the p-values of variables for the training and testing sets were

greater than 0.05, indicating no significant differences between

training and test dataset variables. Figure 2 showed the training

process and optimal parameters of the RF model. The average

error rate when all features were selected is shown in Figure 2A.

Keeping the variables number and the out-of-band error

minimized as much as possible, we selected 47 as the number of

variables (Supplementary File S1). According to the correlation

map between the number of decision trees and the model error

(Figure 2B), we chose 436 trees as the final model condition,

which showed the lowest error rate. The 47 variables with an

importance score above 2 were selected as specific variables for

further model construction. Figure 2C presents the importance

matrix plot of the top 30 variables. Postoperative PLT and
nd procedure of the study.
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TABLE 1 Baseline characteristics and perioperative data of patients.

variables Overall (n = 1,223) Noninfection (n = 855) Infection (n = 368) P-value

Demographics characteristics
Gender[male, n (%)] 488 (39.9) 366 (42.8) 122 (33.2) 0.002

Age, mean (SD) 52.6 (10.5) 52.6 (10.6) 52.5 (10.2) 0.887

Height [cm, mean (SD)] 160.5 (8.5) 161.4 (8.5) 158.9 (8.4) <0.001

Weight [kg, mean (SD)] 60.2 (11.7) 61.1 (12.0) 58.0 (10.6) <0.001

BMI, mean (SD) 22.9 (3.4) 22.9 (3.5) 22.9 (3.2) 0.883

Blood group, n (%) 0.013

A 389 (31.8) 266 (31.1) 123 (33.5)

B 293 (24.0) 217 (25.4) 76 (20.7)

O 433 (35.4) 286 (33.5) 147 (39.9)

AB 108 (8.8) 86 (10.1) 22 (6.0)

Comorbidities
Atrial fibrillation, n (%) 638 (52.2) 428 (50.1) 210 (57.2) 0.024

LV dilatation, n (%) 566 (46.3) 344 (40.2) 222 (60.3) <0.001

Hypertension, n (%) 190 (15.5) 145 (17.0) 45 (12.2) 0.039

Diabetes, n (%) 46 (3.8) 37 (4.3) 9 (2.4) 0.076

Cerebrovascular disease, n (%) 79 (6.5) 56 (6.5) 23 (6.3) 0.845

NYHA classification, n (%) <0.001

Ⅰ 19 (1.6) 17 (2.0) 2 (0.5)

Ⅱ 250 (20.5) 218 (25.5) 32 (8.7)

Ⅲ 799 (65.3) 561 (65.6) 286 (77.8)

Ⅳ 103 (8.4) 59 (6.9) 48 (13.0)

ASA <0.001

1 10 (0.8) 3 (0.4) 7 (1.9)

2 56 (4.6) 38 (4.4) 18 (4.9)

3 865 (70.8) 645 (75.4) 220 (59.8)

4 292 (23.9) 169 (19.8) 123 (33.4)

Presurgery Laboratory test
RBC (1012/L), mean (SD) 4.5 (0.7) 4.6 (0.7) 4.3 (0.6) <0.001

WBC (109/L), median [Q1,Q3] 6.1 (5.0,7.5) 6.2 (5.1,7.6) 5.9 (4.9,7.3) 0.093

Hb, g/L, mean (SD) 130.2 (21.0) 131.3 (21.6) 127.7 (19.4) 0.006

Hct (/L), mean (SD) 40.5 (5.6) 40.8 (5.7) 39.7 (5.4) 0.001

PLT (109/L), mean (SD) 202.9 (68.1) 205.6 (68.6) 196.7 (66.6) 0.037

Creatinine (µmol/L),median [Q1,Q3] 72.0 (61.0,85.7) 73.1 (61.7,85.6) 70.0 (59.9,85.9) 0.394

TP (g/L), mean (SD) 68.3 (6.7) 68.6 (6.9) 67.4 (6.2) 0.006

Albumin (g/L), mean (SD) 39.9 (4.5) 40.3 (4.8) 38.9 (3.8) <0.001

Globulin (g/L), mean (SD) 28.7 (10.0) 28.4 (5.4) 29.4 (16.3) 0.101

ALT (IU/L), median [Q1,Q3] 19.7 (13.0,31.4) 20.0 (13.4,32.6) 18.8 (12.8,29.0) 0.126

AST (IU/L), median [Q1,Q3] 22.8 (18.0,29.4) 22.8 (18.0,29.6) 23.0 (18.8,29.0) 0.926

PT (s), median [Q1,Q3] 13.2 (12.1,14.5) 13.4 (12.5,14.6) 12.6 (11.6,14.2) 0.183

INR, median [Q1,Q3] 1.06 (1.0,1.2) 1.1 (1.0,1.2) 1.0 (1.0,1.2) 0.923

FIB (g/L), median [Q1,Q3] 2.9 (2.5,3.5) 3.0 (2.5,3.6) 2.8 (2.4,3.3) 0.001

Intraoperative information
Charging time(min), median [Q1,Q3] 18.0 (14.0, 23.0) 18.0 (14.0,24.0) 17.0 (13.0,22.0) 0.177

Surgery time(min), mean (SD) 232.9 (61.0) 235.9 (57.6) 226.1 (67.7) 0.010

Blood loss op (ml), median [Q1,Q3] 600.0 (480.0, 600.0) 600.0 (400.0,600.0) 600.0 (600.0,600.0) <0.001

CPB time (min), median [Q1,Q3] 94.0 (74.8, 188.0) 96.0 (77.0,125.0) 88.0 (68.0,109.3) 0.002

ACC time(min), median [Q1,Q3] 60.0 (44.0,81.0) 63.0 (48.0,84.0) 53.0 (37.0,71.0) <0.001

Cardiopulmonary bypass precharge(ml), median [Q1,Q3] 1,600.0 (1,510.0,1,800.0) 1,600.0 (1,505.0,1,750.0) 1,750.0 (1,650.0,1,850.0) <0.001

Total input op (ml), median [Q1,Q3] 2,896.0 (2,390.0, 3,600.0) 2,950.0 (2,410.0,3,790.0) 2,755.0 (2,350.0,3,250.0) <0.001

Total output op (ml), median [Q1,Q3] 2,500.0 (887.0, 3,400.0) 2,100.0 (600.0,3,380.0) 2,800.0 (2,315.0,3,400.0) <0.001

Autologous blood op (ml), median [Q1,Q3] 0 (0, 220) 160.0 (0,400.0) 0 (0,0) <0.001

Total Blood tranfusion
RBC(u), median [Q1,Q3] 2.0 (0,4.0) 1.0 (0,3.0) 2.0 (0,5.0) <0.001

FFP(ml),median [Q1,Q3] 150.0 (0,400.0) 0 (0,400.0) 300.0 (0,450.0) <0.001

PLT,median [Q1,Q3] 0 (0,0) 0 (0,0) 0 (0,0) 0.009

Cyoprecipitate(u),median [Q1,Q3] 0 (0,0) 0 (0,0) 0 (0,0) <0.001

SD, standard deviation; BMI, body mass index; NYHA, New York Heart Association; ASA, The American Society of Anesthesiologists; RBC, red blood cell; WBC, white blood

cell; Hb, hemoglobin; Hct, red blood cell volume; PLT, platelet; TP, total protein, ALT, alanine aminotransferase; AST, aspartate aminotransferase; PT, prothrombin time;

INR, international normalized ratio; FIB, fibrinogen; LVEF, left ventricular ejection fractions; FFP, fresh frozen plasma; CPB, cardiopulmonary bypass precharge.
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TABLE 2 Baseline characteristics and perioperative data in model training and testing cohorts.

Variables Overall (n = 1,223) Training cohort (n = 858) Testing cohort (n = 365) P-value

Demographics characteristics
Gender[male, n (%)] 488 (39.9) 343 (40.0) 145 (39.7) 0.953

Age, mean (SD) 52.6 (10.5) 52.7 (10.4) 52.2 (10.6) 0.467

Height [cm, mean (SD)] 160.5 (8.5) 160.6 (8.6) 160.3 (8.5) 0.611

Weight [kg, mean (SD)] 60.2 (11.7) 60.3 (11.9) 59.9 (11.3) 0.567

BMI, mean (SD) 22.9 (3.4) 22.9 (3.4) 22.9 (3.4) 0.806

Blood group, n (%) 0.831

A 389 (31.8) 272 (31.7) 117 (32.1)

B 293 (24.0) 210 (24.5) 83 (22.7)

O 433 (35.4) 298 (34.7) 135 (37.0)

AB 108 (8.8) 78 (9.1) 30 (8.2)

Comorbidities
Atrial fibrillation, n (%) 638 (52.2) 448 (52.2) 190 (52.1) 0.944

LV dilatation, n (%) 566 (46.3) 391 (45.6) 175 (47.9) 0.456

Hypertension, n (%) 190 (15.5) 130 (15.2) 60 (16.5) 0.875

Diabetes, n (%) 46 (3.8) 31 (3.6) 15 (4.1) 0.832

Cerebrovascular disease, n (%) 79 (6.5) 59 (6.9) 20 (5.5) 0.361

NYHA classification, n (%) 0.939

Ⅰ 19 (1.6) 15 (1.7) 4 (1.1)

Ⅱ 298 (24.3) 213 (24.8) 72 (19.7)

Ⅲ 803 (65.6) 558 (65.0) 244 (66.8)

Ⅳ 103 (8.4) 72 (8.4) 31 (8.5)

ASA, n (%) 0.925

1 10 (0.8) 7 (0.8) 3 (0.8)

2 56 (4.6) 37 (4.3) 19 (5.2)

3 865 (70.7) 609 (71.0) 256 (70.1)

4 292 (23.9) 205 (23.9) 87 (23.8)

Presurgery Laboratory test
RBC (1012/L), mean (SD) 4.5 (0.7) 4.5 (0.7) 4.5 (0.7) 0.226

WBC(109/L), median [Q1,Q3] 6.1 (5.0,7.5) 6.1 (5.0,7.5) 6.2 (5.1,7.6) 0.408

Hb, g/L, mean (SD) 130.2 (21.0) 130.3 (20.7) 129.9 (21.9) 0.766

Hct(/L), mean (SD) 40.5 (5.6) 40.6 (5.5) 40.3 (5.8) 0.474

PLT (109/L), mean (SD) 202.9 (68.1) 200.2 (66.9) 209.3 (70.4) 0.031

Creatinine(µmol/L),median [Q1,Q3] 72.0 (61.0,85.7) 72.0 (61.0,86.3) 71.8 (61.2,85.1) 0.846

TP (g/L), mean (SD) 68.3 (6.7) 68.3 (6.9) 68.2 (6.3) 0.767

Albumin (g/L), mean (SD) 39.9 (4.5) 40.0 (4.5) 39.7 (4.6) 0.377

Globulin (g/L), mean (SD) 28.7 (10.0) 28.4 (5.2) 29.3 (16.4) 0.160

ALT (IU/L), median [Q1,Q3] 19.7 (13.0,31.4) 19.3 (13.0,30.5) 20.3 (13.0,32.8) 0.957

AST (IU/L), median [Q1,Q3] 22.8 (18.0,29.4) 22.8 (18.0,29.0) 23.0 (18.0,30.0) 0.888

PT (s), median [Q1,Q3] 13.2 (12.1,14.5) 13.2 (12.1,14.5) 13.1 (12.0,14.4) 0.139

INR, median [Q1,Q3] 1.06 (1.0,1.2) 1.07 (1.0,1.2) 1.06 (1.0,1.2) 0.316

FIB (g/L), median [Q1,Q3] 2.9 (2.5,3.5) 2.9 (2.4,3.5) 3.0 (2.5,3.6) 0.128

Intraoperative information
Charging time(min), median [Q1,Q3] 18.0 (14.0, 23.0) 17.0 (14.0,23.0) 19.0 (14.0,26.0) 0.007

Surgery time(min), mean (SD) 232.9 (61.0) 231.6 (58.1) 236.0 (67.1) 0.247

Blood loss op (ml), median [Q1,Q3] 600.0 (480.0, 600.0) 600.0 (480.0, 600.0) 600.0 (485.0, 600.0) 0.447

CPB time (min), median [Q1,Q3] 94.0 (74.8, 118.0) 93.0 (75.0,118.0) 94.0 (73.2, 120.8) 0.863

Aortic cross clamp time(min), median [Q1,Q3] 60.0 (44.0,81.0) 60.0 (44.0,80.0) 59.0 (44.0,82.0) 0.488

Cardiopulmonary bypass precharge(ml), median [Q1,Q3] 1,600.0 (1,510.0,1,800.0) 1,600.0 (1,510.0,1,800.0) 1,600.0 (1,510.0,1,800.0) 0.978

Total input op (ml), median [Q1,Q3] 2,896.0 (2,390.0, 3,600.0) 2,880.0 (2,368.0,3,548.5) 2,930.0 (2,430.0,3,750.0) 0.045

Total output op (ml), median [Q1,Q3] 2,500.0 (887.0, 3,400.0) 2,500.0 (800.0,3,300.0) 2,500.0 (1,000.0,3,600.0) 0.021

Autologous blood op (ml), median [Q1,Q3] 0 (0, 220) 0 (0, 212.3) 0 (0, 240) 0.640

Total Blood tranfusion
RBC(u), median [Q1,Q3] 2.0 (0,4.0) 2.0 (0,4.0) 2.0 (0,4.0) 0.256

FFP(ml),median [Q1,Q3] 150.0 (0,400.0) 165.0 (0,400.0) 150.0 (0,400.0) 0.179

PLT,median [Q1,Q3] 0 (0,0) 0 (0,0) 0 (0,0) 0.924

Cyoprecipitate(u),median [Q1,Q3] 0 (0,0) 0 (0,0) 0 (0,0) 0.401
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FIGURE 2

Random forest analysis was performed to screen candidate variables. (A) The scatter plot of the variables. The y-axis represents the out-of-band error
rate, and the x-axis shows the variables’ number. The red point represents the optimal number of variables (47). (B) The number of decision trees
according to the error rate. The y-axis represents the error rate, and the x-axis represents the number of decision trees. (C) Variables were sorted
with the Gini importance parameter in the random forest model. The top 30 variables are listed based on Mean Decrease Gini.
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intraoperative autologous blood were the most important factors,

followed by postoperative AST and postoperative WBC count.
Feature selection by LASSO regression

Figure 3 showed the process and results of feature selection

using LASSO. An optimal λ of 0.01000498 and log (λ) of

−4.604672 were selected (1-SE criteria) according to 10-fold

cross-validation and adopted in the LASSO regression. As shown

in Figure 3A, the 91 features were finally decreased to 35 when

using the above parameters. Figure 3B showed the LASSO

coefficient profiles of the 91 features, plotted against the log (λ)

sequence. A vertical line was drawn at the value selected using

10-fold cross-validation, resulting in 35 features with nonzero

coefficients (Supplementary File S1).
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Construction of the prediction model

The intersection of the RF and LASSO results was shown in a

Venn diagram in Figure 4A. We identified 21 overlapping

important features, including age, weight, length of the hospital

stay, total RBC transfusion, total FFP transfusion, and six

preoperative factors (RBC count, PLT, NYHA class, LVEF, Cr,

and PT), four intraoperative factors (autologous blood, ACC

time, total input, and total output), and six early postoperative

factors (PLT, AST, ALT, Hb, LVEF, and WBC count). We

performed a correlation analysis between these features

(Supplementary File S2). We could see that the highly

correlated variables in the heat map do not appear in the final

selected variables. Then, we compared the different models

(ANN, RF, SVM, XGBoost, GBDT, NB, Adaboost, LogicBag, or

Nnet) performance on the testing dataset, and the results
frontiersin.org
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FIGURE 3

Feature selection using the LASSO regression. (A) Cross validation plot for the penalty term. (B) The coefficients of each predictor when 91 variables were
included in the LASSO regression model.

FIGURE 4

(A) Venn diagram showing the overlap between the variables were selected by the RF and the variables were selected by the LASSO; (B) results of neural
network visualization.
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FIGURE 5

The machine learning models performance evaluation and prediction.
The ROC result in the testing dataset. RF: Random Forest; SVM,
Support Vector Machine; XGBOOST, extremely Gradient Boosting;
GBDT: Gradient Boosting Decison Tree; NB: Naive Bayesian; LogicR:
Logistic Regression; nnet: Neural Networks.
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indicated all the ML model showed excellent discrimination

performance, the AUC value was ranged from 0.794 to 0.849.

(Figure 5). As described in Table 3, the ACC, sensitivity,

specificity, and BACC of the 9 models were 0.6822∼ 0.7836,

0.2600∼ 0.5700, 0.8302∼ 0.9245, and 0.5508∼ 0.7058,

respectively.

Although the predicted result of the ANN model had no

obvious superiority, we observed that the ANN model with the

top P value (P = 0.9151) after McNemar’s Test (Supplementary

File S3), which indicated that the ANN predicted result could

more correctly reflect the actual situation in the test set. The

ANN model was conducted for our detailed analysis.

Considering there is no fixed rule for the number of layers and

neurons for parameter selection and the optimal number of

hidden layer neurons should be situated in the number between

output and input layer sizes, we set the number of hidden
TABLE 3 Model selection results for all machine learning models.

Method AUC Accuracy
RF 0.836 0.7,836

SVM 0.794 0.7,726

XGBoost 0.849 0.7,808

GBDT 0.848 0.7,808

Adaboost 0.819 0.7,808

NB 0.847 0.7,616

LogicR 0.848 0.6,822

nnet 0.849 0.7,781

ANN 0.823 0.7,589
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layers to 1 and neurons to 5. In Figure 4B, we used the five-fold

cross-validation to evaluate the classification model performance.

The following assessment parameters: accuracy, sensitivity,

specificity, positive predictive value, and negative predictive value

were shown in Supplementary File S4.
ANN model performance and external
validation

The AUC of the ANN model was 0.823 in the testing dataset

(Figure 5). The AUC was 0.818 in the external verification

dataset (Supplementary File S5). Thus, the ANN model showed

good performance. The parameters of the ANN model were

shown in Supplementary File S6. The validation curve for our

ANN model based on using the different number of hidden

neurons parameter was shown in Supplementary File S7. The

AUC value of test set stabilized between 0.7 and 0.95. It

indicated that our ANN model had good generalization

capacities to prevent overfitting. Furthermore, we calculated the

AUC for each variable to evaluate the selected variables possibly

influencing the risk for the outcome (Supplementary File S8).
Machine learning models for SSI

We also generated prediction models based on our identified

multiple variables for SSI. As shown in Figure 6, The least AUC

of the seven machine learning models for SSI was >0.832 in the

training dataset and >0.809 in the testing dataset.
Discussion

In this study, we collected data from eight medical centers to

identify critical variables associated with infection after cardiac

surgery, based on the intersection of variables selected by RF

modeling and LASSO regression, to construct a prediction model

that could accurately predict infection after mitral valve surgery.

The prediction models for infection after mitral valve surgery

were established based on these variables, and they all showed

excellent discrimination performance in the testing dataset
Sensitivity Specificity BACC
0.5,200 0.8,330 0.7,015

0.5,200 0.8,679 0.6,940

0.5,400 0.8,717 0.7,058

0.5,400 0.8,717 0.7,058

0.5,400 0.8,717 0.7,058

0.3,300 0.9,245 0.6,273

0.2,600 0.8,415 0.5,508

0.5,400 0.8,679 0.7,040

0.5,700 0.8,302 0.7,001
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FIGURE 6

The area under the ROC curve for surgical site infection(SSI) for ML models.
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(AUC > 0.79). The developed ANN model resulted in AUC scores

of 0.875, 0.823, and 0.818 for the training, testing, and external

verification datasets, respectively. Thus, the risk factors selected

by machine learning methods can accurately predict infection

after mitral valve surgery.

In the present study, the infection rate after cardiac surgery was

30.0%, higher than that in recently reported cardiac surgery cohorts

(13.3%–20.3%) (21–23). However, we included all infections,

including SSIs and other infections (pneumonia, bloodstream

infections, deep sternal infections, and urinary tract infections).

The aging of the population and the increase in postoperative

invasive procedures in recent years might be another reason for

the difference in infection rates. The rate of SSIs in this study

(1.2%) was similar to that reported by other centers (5, 24).

Despite advances in surgical techniques, sterilization, asepsis,

and antibiotic prophylaxis, infections complicate many patients’

postoperative course (25). The factors influencing the risk of

postoperative infection in heart valve surgery are complex.

Previous studies have reported the procedure duration, age,

number of blood transfusions, smoking history, and comorbid

disease as risk factors for infection (26). As EHR systems provide

a large amount of patient data, novel associations between

specific perioperative variables and postoperative complications

will likely be identified. However, the main difficulty in

constructing a predictive model using EHR data is identifying the

most critical variables or features.

Applying machine learning algorithms for clinical data analysis

has revolutionized cardiovascular research methods. Recent

research has shown that machine learning algorithms outperform

traditional statistical modeling approaches. The RF and LASSO

methods were the most widely used machine learning methods

for feature selection in most literature (27–29). Especially the
Frontiers in Cardiovascular Medicine 10
LASSO method might help to solve the collinearity problem. The

unusual methods often cause overfitting in many datasets,

making the results hard or impossible to repeat in another

dataset. So we think this research adopting the widely used RF

and LASSO would be helpful to obtain more practical clinical

value results. As a classic machine learning algorithm, RF

modeling has high accuracy in disease risk prediction and

diagnosis. We calculated the importance of each variable to

postoperative infection using RF modeling and visualized its

contribution. LASSO regression, as a type of linear regression,

performs well in reducing the data dimensions and

multicollinearity among features, and it is generally used in

predictive models to select meaningful feature values among a

large number of variables. The present study used RF modeling

and LASSO regression to identify critical variables related to

postoperative infection. The intersection of variables screened

separately by RF modeling and LASSO regression was

determined using a Venn diagram. We identified 21 key

variables, including age, weight, length of the hospital stay, total

RBC transfusion, total FFP transfusion, six preoperative factors

(RBC count, PLT, NYHA class, LVEF, creatine, and PT), four

intraoperative factors (autologous blood, ACC time, total input,

and total output), and six early postoperative factors (PLT, AST,

ALT, Hb, LVEF, and WBC count). Among these variables, some

were known risk factors (e.g., age, weight, length of hospital stay,

and allo-blood transfusions), and some were previously

unreported predictors.

The preoperative factors identified in the present study were

mainly related to cardiac function and coagulation indicators.

Clinicians can pay attention to RBC count, PLT, NYHA class,

LVEF, PT, and other indicators when the patient is admitted to

the hospital, and focus on improving the patient’s anemia,
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https://doi.org/10.3389/fcvm.2023.1050698
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zhang et al. 10.3389/fcvm.2023.1050698
coagulation function, and heart function during the treatment.

Intraoperative total input and total output are important volume

indicators reflecting the acute physiological responses during

surgery and play critical roles in the development of infection.

Interestingly, we found that intraoperative autologous blood

transfusion was strongly related to postoperative infection. A

previous study showed that autologous blood transfusion reduces

the transfusion of allogeneic blood components (30). However, a

meta-analysis found that autologous blood transfusion during

cardiac surgery was not associated with less postoperative

infection (31). Additionally, Jan et al. reported that cell salvage is

directly associated with a higher infection rate (32). The direct

effect of autologous blood transfusion on postoperative infection

risk has not been previously demonstrated, and the mechanisms

may require further exploration. For intraoperative risk factors,

clinicians can improve the operation method to shorten the ACC

time, minimize the patient’s blood loss, and strictly control the

intake.

Laboratory biomarkers in the early postoperative period can

reflect the acute pathophysiology of infection. In the present

study, we identified six laboratory indicators associated with

infection. The number of WBCs in peripheral blood directly

reflects the inflammation level in the body. The elevated white

blood cell (WBC) count has traditionally been a predictor of

infection in clinical practice. Recently several studies also

reported that increased preoperative WBC count is an

independent predictor of postoperative cardiac infection (33).

And the literature reported that the combination of PCT and

WBC levels over the first 3 postoperative days was able to predict

postoperative infection within the 30 days following cardiac

surgery (34). The postoperative WBC count in our study was

collected early (within 48 h after the surgery) and we excluded

patients who were infected within 30 days before surgery. Thus,

the result indicated that early postoperative WBC count was a

predicted indicator of postoperative infection. PLT and AST

levels also reflect the severity of the patient’s condition and are

closely associated with infection (35–37). For early postoperative

risk factors, clinicians should pay special attention to PLT, AST,

ALT, Hb, LVEF, and WBC count within 48 h after surgery.

These important perioperative factors may help guide

individualized preventive strategies and aid in proper infection

management after cardiac surgery.

A strength of the present study is that we evaluated the risk

factors of various postoperative infections within a sizeable

multicenter cohort, rendering our results generalizable to

patients undergoing mitral valve surgery. Furthermore, the

ANN model demonstrated good generalization ability in the

internal validation cohort. Additionally, we identified the four

most important clinical predictive features of infection after

cardiac surgery: postoperative PLT, intraoperative autologous

blood transfusion, postoperative AST, and postoperative WBC

count. Several limitations also exist. First, as this was a

retrospective study, there is potential for unexamined

confounding factors and selection bias; however, we adopted
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the multicenter data may enhance the reliability of our results.

The infection rate was consistent with each other in most

hospitals. However, due to the small sample size in a few

hospitals’ data and lead to the Kruskal test value was not

statistically meaningful (<0.05) (Supplementary File S9).

Moreover, the reason for this discrepancy between hospitals

each other was unknown and needed further study.

Additionally, Unlike the traditional linear models, the entire

machine learning process performs in a black box and lacks

interpretability. And the external validation in our study was

done on a very small number of cases. Another limitation is the

lack of discrimination for the main outcome of interest which is

infection. Our model is a dichotomous prediction model, which

can only distinguish whether there is an infection but cannot

predict the specific type of infection. We also generated

prediction models based on our identified multiple variables for

surgical site infection (SSI) and showed a good result. This

result indicated that our identified multiple variables strongly

correlated with surgical site infection. And it also indicated that

there were some commonalities among the different types of

infection. However, the relatively few SSI cases (15/1223), and

further research was needed. Finally, this study focused on all

infections occurring within 30 days postoperatively, and we did

not collect information about when the infection happened. So,

our model can only predict the infection or not infection

without precisely the time of infection.
Conclusion

The present study demonstrated the potential of machine

learning algorithm-based methods for selecting features and

generating postoperative infection-prediction tools. We identified

critical perioperative variables and successfully established a

machine-learning model to optimize infection risk prediction

after mitral valve surgery. This approach could guide clinical

treatment, decrease the risk of postoperative infection, and

improve the prognosis of patients.
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