54 research outputs found

    Establishment of an Inducible HBV Stable Cell Line that Expresses cccDNA-dependent Epitope-tagged HBeAg for Screening of cccDNA Modulators

    Get PDF
    Hepatitis B virus (HBV) covalently closed circular (ccc) DNA is essential to the virus life cycle, its elimination during chronic infection is considered critical to a durable therapy but has not been achieved by current antivirals. Despite being essential, cccDNA has not been the major target of high throughput screening (HTS), largely because of the limitations of current HBV tissue culture systems, including the impracticality of detecting cccDNA itself. In response to this need, we have previously developed a proof-of-concept HepDE19 cell line in which the production of wildtype e antigen (HBeAg) is dependent upon cccDNA. However, the existing assay system is not ideal for HTS because the HBeAg ELISA cross reacts with a viral HBeAg homologue, which is the core antigen (HBcAg) expressed largely in a cccDNA-independent fashion in HepDE19 cells. To further improve the assay specificity, we report herein a “second-generation” cccDNA reporter cell line, termed HepBHAe82. In the similar principle of HepDE19 line, an in-frame HA epitope tag was introduced into the precore domain of HBeAg open reading frame in the transgene of HepBHAe82 cells without disrupting any cis-element critical for HBV replication and HBeAg secretion. A chemiluminescence ELISA assay (CLIA) for the detection of HA-tagged HBeAg with HA antibody serving as capture antibody and HBeAb serving as detection antibody has been developed to eliminate the confounding signal from HBcAg. The miniaturized HepBHAe82 cell based assay system exhibits high level of cccDNA-dependent HA-HBeAg production and high specific readout signals with low background. We have also established a HepHA-HBe4 cell line expressing transgene-dependent HA-HBeAg as a counter screen to identify HBeAg inhibitors. The HepBHAe82 system is amenable to antiviral HTS development, and can be used to identify host factors that regulate cccDNA metabolism and transcription

    Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA

    Get PDF
    Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (Δ) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-Δ interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV Δ directly in absence of any other cellular proteins, indicating a direct Δ RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade Δ. In addition, the lower stem portion of Δ is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of Δ abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-Δ interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with Δ, as the deletion of ExoIII abolished in vitro ISG20-Δ binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general

    RNA Helicase DDX17 Inhibits Hepatitis B Virus Replication by Blocking Viral Pregenomic RNA Encapsidation

    Get PDF
    DDX17 is a member of the DEAD-box helicase family proteins involved in cellular RNA folding, splicing, and translation. It has been reported that DDX17 serves as a cofactor of host zinc finger antiviral protein (ZAP)-mediated retroviral RNA degradation and exerts direct antiviral function against Raft Valley fever virus through binding to specific stem-loop structures of viral RNA. Intriguingly, we have previously shown that ZAP inhibits hepatitis B virus (HBV) replication through promoting viral RNA decay, and the ZAP-responsive element (ZRE) of HBV pregenomic RNA (pgRNA) contains a stem-loop structure, specifically epsilon, which serves as the packaging signal for pgRNA encapsidation. In this study, we demonstrated that the endogenous DDX17 is constitutively expressed in human hepatocyte-derived cells but dispensable for ZAP-mediated HBV RNA degradation. However, DDX17 was found to inhibit HBV replication primarily by reducing the level of cytoplasmic encapsidated pgRNA in a helicase-dependent manner. Immunofluorescence assay revealed that DDX17 could gain access to cytoplasm from nucleus in the presence of HBV RNA. In addition, RNA immunoprecipitation and electrophoretic mobility shift assays demonstrated that the enzymatically active DDX17 competes with HBV polymerase to bind to pgRNA at the 5' epsilon motif. In summary, our study suggests that DDX17 serves as an intrinsic host restriction factor against HBV through interfering with pgRNA encapsidation. IMPORTANCE Hepatitis B virus (HBV) chronic infection, a long-studied but yet incurable disease, remains a major public health concern worldwide. Given that HBV replication cycle highly depends on host factors, deepening our understanding of the host-virus interaction is thus of great significance in the journey of finding a cure. In eukaryotic cells, RNA helicases of the DEAD box family are highly conserved enzymes involved in diverse processes of cellular RNA metabolism. Emerging data have shown that DDX17, a typical member of the DEAD box family, functions as an antiviral factor through interacting with viral RNA. In this study, we, for the first time, demonstrate that DDX17 inhibits HBV through blocking the formation of viral replication complex, which not only broadens the antiviral spectrum of DDX17 but also provides new insight into the molecular mechanism of DDX17-mediated virus-host interaction

    Association of gestational age at birth with subsequent suspected Developmental Coordination Disorder in early childhood

    Get PDF
    Importance. It remains unknown whether children born at different degrees of prematurity, early-term and post-term might have a higher risk of developing Developmental Coordination Disorder (DCD) compared to completely full-term children (39-40 gestational weeks). Objective. To differentiate between suspected DCD in children with different gestational ages based on a national representative sample in China. DESIGN, SETTING, AND PARTICIPANTS We conducted a retrospective cohort study in China from 2018 to 2019. A total of 152,433 children from 2,403 public kindergartens in 551 cities of China aged 3-5 years old were included in the final analysis. The association between gestational age and motor performance was investigated. A multi-level regression model was developed to determine the strength of association for different gestational ages associated with suspected DCD when considering kindergartens as clusters. Main outcomes and measures. Children’s motor performance was assessed using the Little Developmental Coordination Disorder Questionnaire (LDCDQ), completed by parents. Gestational age was determined according to the mother’s medical records. Results. Of the 152,433 children aged 3-5 years old, 80,370 (52.7%) were male, and 72,063 (47.3%) were female. There were 45,052 children aged 3 years old (29.6%), 59,796 aged 4 years old(39.2%), and 47,585 children aged 5 years old (31.2%). The LDCDQ total scores for very-preterm (ÎČ=-1.74, 95%CI: -1.98, 1.50; p<0.001), moderately-preterm (ÎČ=-1.24, 95%CI: -1.60, -0.89; p<0.001), late-preterm (ÎČ=-0.92, 95%CI: -1.08, -0.76; p<0.001), early-term (ÎČ=-0.36, 95%CI: -0.46, -0.25; p<0.001) and post-term children (ÎČ=-0.47, 95%CI: -0.67, -0.26; p<0.001) were significantly lower than full-term children when adjusting for child, family and maternal health characteristics. The very-preterm (OR=1.35, 95%CI: 1.23,1.48; p<0.001), moderately-preterm (OR=1.18, 95%CI: 1.02, 1.36; p<0.001), late-preterm (OR =1.24, 95%CI: 1.16,1.32; p<0.001), early-term (OR =1.11, 95%CI: 1.06,1.16; p<0.001) and post-term children (OR =1.167, 95%CI: 1.07, 1.27; p<0.001) were more likely to fall in the suspected Developmental Coordination Disorder (DCD) category on the LDCDQ compared with completely full-term children after adjusting for the same characteristics. The associations between different gestational ages and suspected DCD were stronger in boys and older (5 year old) children (each p<0.05). Conclusions and relevance. We found significant associations between every degree of prematurity at birth, early-term and post-term birth with suspected DCD when compared with full-term birth. Our findings have important implications for understanding motor development in children born at different gestational ages. Long-term follow-up and rehabilitation interventions should be considered for early- and post-term born children

    Examination and Countermeasures of Network Education in Colleges and Universities Based on Ordinary Differential Equation Model

    No full text
    College network education as the main development direction of modern education, although both for professional teachers and students provides a new platform, and provides sufficient conditions for the people to continue learning, but also show more quality problem, so the system understanding of college network education present situation, according to the practice of science of education evaluation system to judge the quality of education, To continuously improve the comprehensive management efficiency of network education in colleges and universities is the focus of attention of college education administrators at present. This paper studies the theoretical definition of ordinary differential equation model as the core, builds a quality evaluation system based on the innovation model of network education in colleges and universities, investigates and analyzes the implementation of network education in a university, and finally puts forward effective prospect prediction and improvement measures combined with the research results

    Simplex Method for Seeking the Test Number in Transportation Problems

    No full text

    Acupuncture in the Treatment of Abnormal Muscle Tone in Children with Cerebral Palsy: A Meta-Analysis

    No full text
    Objective. To analyse the clinical efficacy of acupuncture and routine treatment in improving dystonia in children with cerebral palsy. Method. The randomized controlled trials published from the establishment of the databases to August 2022 on acupuncture in the treatment of dystonia in children with cerebral palsy were collected and comprehensively searched in China national knowledge infrastructure (CNKI), weipu (VIP), Wanfang, SinoMed, PubMed, Excerpta medica database (EMBASE), and Cochrane Library. The literature was selected according to the established standards, the quality of the included studies was evaluated, the heterogeneity of the included studies was evaluated with the I2 test, and the appropriate model was selected for analysis. Sensitivity analysis was used to evaluate the reliability of the results, and a funnel plot was used to evaluate the publication bias. Results. Fifteen studies were included in the meta-analysis. The control group was treated with routine treatment and acupuncture combined with routine treatment. The outcome index showed that the effect in the treatment group was better: Modified Ashworth Scale score: −0.52, 95% confidence interval (CI) (−0.62 to −0.41), p<0.01. The treatment group showed reduced muscle tension to a greater extent (integral eletromyographic (iEMG) score: standard mean square deviation = −2.97, 95% CI (−4.87 to −1.06), p<0.01). The effective rate in the control group was 74.2% and that in the treatment group was 91.5%, odds ratio = 3.70, 95% CI (2.02–6.78), p<0.01. The funnel plot showed publication bias. Conclusion. Acupuncture combined with routine training could improve muscle tension abnormalities and improve the efficiency of clinical treatment

    Hepatitis B Virus Precore Protein p22 Inhibits Alpha Interferon Signaling by Blocking STAT Nuclear Translocation

    No full text
    Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg−) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg− patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy. IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved

    Evaluating the Effect of Rail Fastener Failure on Dynamic Responses of Train-Ballasted Track-Subgrade Coupling System for Smart Track Condition Assessment

    No full text
    Rail fasteners are among the key components of ballasted track of high-speed railway due to their functionality of fixing rails to sleepers. The failure of rail fastening system hinders the transmission of train loads to underlying track substructure and therefore endangers the operation safety and longevity of ballasted track. This paper first established a three-dimensional (3D) numerical model of the train-ballasted track-subgrade coupling system by integrating multibody dynamics (MBD) and finite element method (FEM). Numerical simulations were then performed to investigate the effects of different patterns of rail fastener failure (i.e., consecutive single-side, alternate single-side, and consecutive double-side) on critical dynamic responses of track structures, train running stability, and operation safety. The results show that the resulting influences of different patterns of rail fastener failure descend in the order of consecutive double-side failure, consecutive single-side failure, and alternate single-side failure. As the number of failed fasteners increases, the range where dynamic responses of track structures are influenced extends, and the failure of two consecutive single-side fasteners exerts a similar influence as that of four alternate single-side fasteners. The failure of single-side fasteners affects dynamic responses of the intact side of track structures relatively insignificantly. The influence of rail fastener failure on track structures exhibits hysteresis, thus indicating that special attention needs to be paid to locations behind failed fasteners during track inspection and maintenance. The occurrence of the failure of two or more consecutive fasteners demands timely maintenance work in order to prevent aggravated deterioration of track structures. The findings of this study could provide useful reference and guidance to smart track condition assessment and condition-based track maintenance
    • 

    corecore