42 research outputs found

    Microbial diversity and physicochemical properties in farmland soils amended by effective microorganisms and fulvic acid for cropping Asian ginseng

    Get PDF
    Demand for products made from the dry mass of Asian ginseng (Panax ginseng) is growing, but harvest is limited by fungal disease infection when ginseng is replanted in the same field. Rotated cropping with maize can cope with the replant limit, but it may take decades. We aimed to amend post-maize-cropping farmland soils for cultivating Asian ginseng, using effective microorganisms EMs and fulvic acid (FA) additives and detecting and comparing their effects on soil microbial diversity and physiochemical properties. Amendments promoted seedling survival and depressed disease-infection. Both EMs and FA increased the relative abundances of Pseudomonas, Flavobacterium, Duganella, and Massilia spp., but, decreased the relative abundances of Fusarium and Sistotrema. In addition, soil nutrient availability and properties that benefitted nutrient availabilities were promoted. In conclusion, amendments with EMs and FA improved the fertility of farmland soils, and the quality of Asian ginseng, and revealed the relationship between soil microbial diversity and physiochemical properties

    Association between admission-blood-glucose-to-albumin ratio and clinical outcomes in patients with ST-elevation myocardial infarction undergoing percutaneous coronary intervention

    Get PDF
    IntroductionIt is unclear whether admission-blood-glucose-to-albumin ratio (AAR) predicts adverse clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI) who are treated with percutaneous coronary intervention (PCI). Here, we performed a observational study to explore the predictive value of AAR on clinical outcomes.MethodsPatients diagnosed with STEMI who underwent PCI between January 2010 and February 2020 were enrolled in the study. The patients were classified into three groups according to AAR tertile. The primary outcome was in-hospital all-cause mortality, and the secondary outcomes were in-hospital major adverse cardiac events (MACEs), as well as all-cause mortality and MACEs during follow-up. Logistic regression, Kaplan–Meier analysis, and Cox proportional hazard regression were the primary analyses used to estimate outcomes.ResultsAmong the 3,224 enrolled patients, there were 130 cases of in-hospital all-cause mortality (3.9%) and 181 patients (5.4%) experienced MACEs. After adjustment for covariates, multivariate analysis demonstrated that an increase in AAR was associated with an increased risk of in-hospital all-cause mortality [adjusted odds ratio (OR): 2.72, 95% CI: 1.47–5.03, P = 0.001] and MACEs (adjusted OR: 1.91, 95% CI: 1.18–3.10, P = 0.009), as well as long-term all-cause mortality [adjusted hazard ratio (HR): 1.64, 95% CI: 1.19–2.28, P = 0.003] and MACEs (adjusted HR: 1.58, 95% CI: 1.16–2.14, P = 0.003). Receiver operating characteristic (ROC) curve analysis indicated that AAR was an accurate predictor of in-hospital all-cause mortality (AUC = 0.718, 95% CI: 0.675–0.761) and MACEs (AUC = 0.672, 95% CI: 0.631–0.712).DiscussionAAR is a novel and convenient independent predictor of all-cause mortality and MACEs, both in-hospital and long-term, for STEMI patients receiving PCI

    Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models

    No full text
    Mangroves are one of the most important coastal wetland ecosystems, and the compositions and distributions of mangrove species are essential for conservation and restoration efforts. Many studies have explored this topic using remote sensing images that were obtained by satellite-borne and airborne sensors, which are known to be efficient for monitoring the mangrove ecosystem. With improvements in carrier platforms and sensor technology, unmanned aerial vehicles (UAVs) with high-resolution hyperspectral images in both spectral and spatial domains have been used to monitor crops, forests, and other landscapes of interest. This study aims to classify mangrove species on Qi’ao Island using object-based image analysis techniques based on UAV hyperspectral images obtained from a commercial hyperspectral imaging sensor (UHD 185) onboard a UAV platform. First, the image objects were obtained by segmenting the UAV hyperspectral image and the UAV-derived digital surface model (DSM) data. Second, spectral features, textural features, and vegetation indices (VIs) were extracted from the UAV hyperspectral image, and the UAV-derived DSM data were used to extract height information. Third, the classification and regression tree (CART) method was used to selection bands, and the correlation-based feature selection (CFS) algorithm was employed for feature reduction. Finally, the objects were classified into different mangrove species and other land covers based on their spectral and spatial characteristic differences. The classification results showed that when considering the three features (spectral features, textural features, and hyperspectral VIs), the overall classification accuracies of the two classifiers used in this paper, i.e., k-nearest neighbor (KNN) and support vector machine (SVM), were 76.12% (Kappa = 0.73) and 82.39% (Kappa = 0.801), respectively. After incorporating tree height into the classification features, the accuracy of species classification increased, and the overall classification accuracies of KNN and SVM reached 82.09% (Kappa = 0.797) and 88.66% (Kappa = 0.871), respectively. It is clear that SVM outperformed KNN for mangrove species classification. These results also suggest that height information is effective for discriminating mangrove species with similar spectral signatures, but different heights. In addition, the classification accuracy and performance of SVM can be further improved by feature reduction. The overall results provided evidence for the effectiveness and potential of UAV hyperspectral data for mangrove species identification

    Identifying Mangrove Species Using Field Close-Range Snapshot Hyperspectral Imaging and Machine-Learning Techniques

    No full text
    Investigating mangrove species composition is a basic and important topic in wetland management and conservation. This study aims to explore the potential of close-range hyperspectral imaging with a snapshot hyperspectral sensor for identifying mangrove species under field conditions. Specifically, we assessed the data pre-processing and transformation, waveband selection and machine-learning techniques to develop an optimal classification scheme for eight mangrove species in Qi’ao Island of Zhuhai, Guangdong, China. After data pre-processing and transformation, five spectral datasets, which included the reflectance spectra R and its first-order derivative d(R), the logarithm of the reflectance spectra log(R) and its first-order derivative d[log(R)], and hyperspectral vegetation indices (VIs), were used as the input data for each classifier. Consequently, three waveband selection methods, including the stepwise discriminant analysis (SDA), correlation-based feature selection (CFS), and successive projections algorithm (SPA) were used to reduce dimensionality and select the effective wavebands for identifying mangrove species. Furthermore, we evaluated the performance of mangrove species classification using four classifiers, including linear discriminant analysis (LDA), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). Application of the four considered classifiers on the reflectance spectra of all wavebands yielded overall classification accuracies of the eight mangrove species higher than 80%, with SVM having the highest accuracy of 93.54% (Kappa = 0.9256). Using the selected wavebands derived from SPA, the accuracy of SVM reached 93.13% (Kappa = 0.9208). The addition of hyperspectral VIs and d[log(R)] spectral datasets further improves the accuracies to 93.54% (Kappa = 0.9253) and 96.46% (Kappa = 0.9591), respectively. These results suggest that it is highly effective to apply field close-range snapshot hyperspectral images and machine-learning classifiers to classify mangrove species

    Antimicrobial Susceptibility Testing of Metronidazole and Clindamycin against Gardnerella vaginalis in Planktonic and Biofilm Formation

    No full text
    Background. Bacterial vaginosis (BV), one of the most common vaginal ecosystem-related microbiologic syndromes, is the most common disorder in women of reproductive age. Gardnerella (G.) vaginalis is the predominant species causing this infection. Our aim was to compare the antimicrobial susceptibilities of metronidazole and clindamycin against G. vaginalis at planktonic and biofilm levels. Methods. From September 2019 to October 2019, we recruited a total of 10 patients with BV who underwent gynecological examinations at Beijing Obstetrics and Gynecology Hospital. G. vaginalis isolates were obtained from the vagina and identified using their characteristic colony morphology. Sequence data of clinical G. vaginalis isolates were confirmed by comparing 16S rDNA sequences. Subsequently, clinical isolates were evaluated for antimicrobial susceptibilities in vitro to metronidazole and clindamycin at planktonic and biofilm levels. The minimum inhibitory concentration (MIC) for metronidazole and clindamycin was evaluated by antimicrobial susceptibility testing. The minimum biofilm eradication concentration (MBEC) was evaluated by the biofilm inhibition assay. Results. Planktonic clinical isolates showed a significantly higher susceptibility rate (76.67%) and lower resistance rate (23.33%) to clindamycin than to metronidazole (susceptibility rate: 38.24%; resistance rate: 58.82%; P128 μg/mL. Moreover, the MIC of clindamycin was higher too for biofilm-forming isolates (0.099 ± 0.041 μg/mL vs. 23.7 ± 9.49 μg/mL; P=0.034); the resistance rate was 27.3%, and the MBEC of clindamycin was 28.4 ± 6.50 μg/mL. Conclusion. Our results indicate that in comparison to metronidazole, clindamycin seems to be a better choice to tackle G. vaginalis as it exhibits a relatively higher susceptibility rate and lower resistance rate

    Evolutionary Pattern Comparisons of the SARS-CoV-2 Delta Variant in Countries/Regions with High and Low Vaccine Coverage

    No full text
    It has been argued that vaccine-breakthrough infections of SARS-CoV-2 would likely accelerate the emergence of novel variants with immune evasion. This study explored the evolutionary patterns of the Delta variant in countries/regions with relatively high and low vaccine coverage based on large-scale sequences. Our results showed that (i) the sequences were grouped into two clusters (L and R); the R cluster was dominant, its proportion increased over time and was higher in the high-vaccine-coverage areas; (ii) genetic diversities in the countries/regions with low vaccine coverage were higher than those in the ones with high vaccine coverage; (iii) unique mutations and co-mutations were detected in different countries/regions; in particular, common co-mutations were exhibited in highly occurring frequencies in the areas with high vaccine coverage and presented in increasing frequencies over time in the areas with low vaccine coverage; (iv) five sites on the S protein were under strong positive selection in different countries/regions, with three in non-C to U sites (I95T, G142D and T950N), and the occurring frequencies of I95T in high vaccine coverage areas were higher, while G142D and T950N were potentially immune-pressure-selected sites; and (v) mutation at the N6-methyladenosine site 4 on ORF7a (C27527T, P45L) was detected and might be caused by immune pressure. Our study suggested that certain variation differences existed between countries/regions with high and low vaccine coverage, but they were not likely caused by host immune pressure. We inferred that no extra immune pressures on SARS-CoV-2 were generated with high vaccine coverage, and we suggest promoting and strengthening the uptake of the COVID-19 vaccine worldwide, especially in less developed areas

    Continuous live imaging reveals a subtle pathological alteration with cell behaviors in congenital heart malformation

    No full text
    To form fully functional four-chambered structure, mammalian heart development undergoes a transient finger-shaped trabeculae, crucial for efficient contraction and exchange for gas and nutrient. Although its developmental origin and direct relevance to congenital heart disease has been studied extensively, the time-resolved cellular mechanism underlying hypotrabeculation remains elusive. Here, we employed in toto live imaging and reconstructed the holistic cell lineages and cellular behavior landscape of control and hypotrabeculed hearts of mouse embryos from E9.5 for up to 24 h. Compared to control, hypotrabeculation in ErbB2 mutants arose mainly through dual mechanisms: both reduced proliferation of trabecular cardiomyocytes from early cell fate segregation and markedly impaired oriented cell division and migration. Further examination of mosaic mutant hearts confirmed alterations in cellular behaviors in a cell autonomous manner. Thus, our work offers a framework for continuous live imaging and digital cell lineage analysis to better understand subtle pathological alterations in congenital heart disease
    corecore