61 research outputs found
Relation Structure-Aware Heterogeneous Information Network Embedding
Heterogeneous information network (HIN) embedding aims to embed multiple
types of nodes into a low-dimensional space. Although most existing HIN
embedding methods consider heterogeneous relations in HINs, they usually employ
one single model for all relations without distinction, which inevitably
restricts the capability of network embedding. In this paper, we take the
structural characteristics of heterogeneous relations into consideration and
propose a novel Relation structure-aware Heterogeneous Information Network
Embedding model (RHINE). By exploring the real-world networks with thorough
mathematical analysis, we present two structure-related measures which can
consistently distinguish heterogeneous relations into two categories:
Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the
distinctive characteristics of relations, in our RHINE, we propose different
models specifically tailored to handle ARs and IRs, which can better capture
the structures and semantics of the networks. At last, we combine and optimize
these models in a unified and elegant manner. Extensive experiments on three
real-world datasets demonstrate that our model significantly outperforms the
state-of-the-art methods in various tasks, including node clustering, link
prediction, and node classification
Puerarin Improves Diabetic Aorta Injury by Inhibiting NADPH Oxidase-Derived Oxidative Stress in STZ-Induced Diabetic Rats
Objective. Puerarin is a natural flavonoid isolated from the TCM lobed kudzuvine root. This study investigated the effect and mechanisms of puerarin on diabetic aorta in rats. Methods. Streptozotocin- (STZ-) induced diabetic rats were administered with puerarin for 3 weeks. Levels of serum insulin (INS), PGE2, endothelin (ET), glycated hemoglobin (GHb), H2O2, and nitric oxide (NO) in rats were measured by ELISA and colorimetric assay kits. The aortas were stained with H&E. Moreover, the mRNA expression of ICAM-1, LOX-1, NADPH oxidase 2 (NOX2), and NOX4 and the protein expression of ICAM-1, LOX-1, NF-κB p65, E-selectin, NOX2, and NOX4 in aorta tissues were measured by real-time PCR and Western blot, respectively. The localization of ICAM-1, NF-κB p65, NOX2, and NOX4 in the aorta tissues was also determined through immunohistochemistry. Results. Puerarin treatment exerted no effect on fasting blood glucose levels but significantly reduced the serum levels of INS, GHb, PGE2, ET, H2O2, and NO. In addition, puerarin improved the pathological alterations and inhibited the expression of ICAM-1, LOX-1, NOX2, and NOX4 at both mRNA and protein levels. Puerarin also significantly reduced the number of cells showing positive staining for ICAM-1, NOX2, NOX4, and NF-κB p65. Conclusion. Puerarin demonstrated protective effect on the STZ-induced diabetic rat aorta. The protective mechanisms may include regulation of NF-κB and inhibition of NOX2 and NOX4 followed by inhibition of cell adhesion molecule expression
Improved response time of laser etched polymer optical fiber Bragg grating humidity sensor
The humidity sensor made of polymer optical fiber Bragg grating (POFBG) responds to the water content change in fiber induced by the change of environmental condition. The response time strongly depends on fiber size as the water change is a diffusion process. The ultra short laser pulses have been providing an effective micro fabrication method to achieve spatial localized modification in materials. In this work we used the excimer laser to create different microstructures (slot, D-shape) in POFBG to improve its performance. A significant improvement in the response time has been achieved in a laser etched D-shaped POFBG humidity sensor
Volcanically-induced floral changes across the Triassic-Jurassic (T-J) transition
The End-Triassic Mass Extinction (ETME) saw the catastrophic loss of ca. 50% of marine genera temporally associated with emplacement of the Central Atlantic Magmatic Province (CAMP). However, the effects of the ETME on land is a controversial topic. Evaluation of the disparate cause(s) and effects of the extinction requires additional, detailed terrestrial records of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Triassic-Jurassic (T-J) transition preserved in lacustrine sediments from the Jiyuan Basin, North China. High-resolution chemostratigraphy, palynological, kerogen, and sedimentological data reveal that terrestrial conditions responded to and were defined by large-scale volcanism. The record of sedimentary mercury reveals two discrete CAMP eruptive phases during the T-J transition. Each of these can be correlated with large, negative C isotope excursions (CIE-I of -4.7 ‰; CIE-II of -2.9 ‰), significantly reduced plant diversity (with ca. 45% and 44% generic losses respectively), enhanced wildfire (marked by increased fusinite or charcoal content), and major climatic shifts towards drier and hotter conditions (indicated by the occurrence of calcareous nodules, increased Classopollis pollen content, and PCA analysis). Our results show that CAMP eruptions may have followed a bimodal eruptive model and demonstrate the powerful ability of large-scale volcanism to alter the global C cycle and profoundly affect the climate, in turn leading to enhanced wildfires and a collapse in land plant diversity during the T-J transition
Extremely Narrow and Actively Tunable Mie Surface Lattice Resonances in GeSbTe Metasurfaces: Study
Mie surface lattice resonances (SLRs) supported by periodic all-dielectric nanoparticles emerge from the radiative coupling of localized Mie resonances in individual nanoparticles through Rayleigh anomaly diffraction. To date, it remains challenging to achieve narrow bandwidth and active tuning simultaneously. In this work, we report extremely narrow and actively tunable electric dipole SLRs (ED-SLRs) in Ge2Se2Te5 (GST) metasurfaces. Simulation results show that, under oblique incidence with TE polarization, ED-SLRs with extremely narrow linewidth down to 12 nm and high quality factor up to 409 can be excited in the mid-infrared regime. By varying the incidence angle, the ED-SLR can be tuned over an extremely large spectral region covering almost the entire mid-infrared regime. We further numerically show that, by changing the GST crystalline fraction, the ED-SLR can be actively tuned, leading to nonvolatile, reconfigurable, and narrowband filtering, all-optical multilevel modulation, or all-optical switching with high performance. We expect that this work will advance the engineering of Mie SLRs and will find intriguing applications in optical telecommunication, networks, and microsystems
- …