87 research outputs found

    Technical Note: Melt Dispersion Technique for Preparing Paraffin Wax Microspheres for Cellulose Encapsulation

    Get PDF
    A practical and convenient approach for making paraffin wax microspheres with a melt dispersion technique was reported in this study. Surfactants were melted in water by water bath and then added to a flask after the wax was completely melted with stirring. Paraffin wax microspheres were generated by cooling. The obtained microspheres exhibited uniform diameters in the range of 10-60 ΞΌm observed with a scanning electrical microscope and were mainly dependent on the surfactant ratio. Encapsulated microcrystalline cellulose particles with the previously mentioned conditions were also generated and demonstrated the possibility of encapsulating microcrystalline cellulose with some acceptable agglomeration, although some encapsulated individually. Encapsulation of cellulose could be beneficial if agglomeration could be minimized and the encapsulated microcapsules could be dispersed during blending for wood composites manufacture

    Optical vortices enabled by structural vortices

    Full text link
    The structural symmetry of solids plays an important role in defining their linear and nonlinear optical properties. The quest for versatile, cost-effective, large-scale, and defect-free approaches and materials platforms for tailoring structural and optical properties on demand has been underway for decades. We experimentally demonstrate a bottom-up self-assembly-based organic engineered material comprised of synthesized molecules with large dipole moments that are crystallized into a spherulite structure. The molecules align in an azimuthal direction, resulting in a vortex polarity with spontaneously broken symmetry leading to strong optical anisotropy and nonlinear optical responses. These unique polarization properties of the judiciously designed organic spherulite combined with the symmetry of structured optical beams enable a plethora of new linear and nonlinear light-matter interactions, including the generation of optical vortex beams with complex spin states and on-demand topological charges at the fundamental, doubled, and tripled frequencies. The results of this work are likely to enable numerous applications in areas such as high-dimensional quantum information processing, with large capacity and high security. The demonstrated spherulite crystals facilitate stand-alone micro-scale devices that rely on the unique micro-scale spontaneous vortex polarity that is likely to enable future applications for high-dimensional quantum information processing, spatiotemporal optical vortices, and a novel platform for optical manipulation and trapping

    Evaluation of Analgesic and Anti-Inflammatory Activities of Water Extract of Galla Chinensis In Vivo

    Get PDF
    Aim. Pain and inflammation are associated with many diseases in humans and animals. Galla Chinensis, a traditional Chinese medicine, has a variety of pharmacological properties. The purpose of this study was to evaluate analgesic and anti-inflammatory activities of Galla Chinensis through different animal models. Method. The analgesic activities were evaluated by hot-plate and writhing tests. The anti-inflammatory effects were assessed by ear edema, capillary permeability, and paw edema tests. The contents of cytokines (NO, iNOS, PGE2, and IL-10) in serum of rats in paw edema test were inspected by ELISA assays. Results. In the hot-plate test, Galla Chinensis could significantly extend pain threshold when compared to control group. The inhibitory rates of writhes ranged from 36.62% to 68.57% in Galla Chinensis-treated mice. Treatment with Galla Chinensis (1 and 0.5 g/kg) could significantly inhibit ear edema (47.45 and 36.91%, resp.; P < 0.01). Galla Chinensis (1 g/kg) had significant (P < 0.05) anti-inflammatory activity in capillary permeability test (29.04%). In carrageenan-induced edema test, the inhibitory rates were 43.71% and 44.07% (P < 0.01) at 1 h and 2 h after administration of Galla Chinensis (1 g/kg), respectively, and the levels of proinflammatory cytokines were significantly reduced. Conclusion. These results suggest that Galla Chinensis has analgesic and anti-inflammatory effects, which may be a candidate drug for the treatment of inflammation and pain

    In Vivo

    Get PDF
    Aim. Dermatophytosis is one of the main fungal diseases in humans and animals all over the world. Galla chinensis, a traditional medicine, has various pharmacological effects. The goal of this study was to evaluate the treatment effect of Galla chinensis solution (GCS) on dermatophytosis-infected dogs (Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophytes, resp.). Methods. The treatment effects of GCS were evaluated by mycological cure rates and clinical score comprised of three indices, including inflammation, hair loss, and lesion scale. Results. The results showed that, in the three models of dermatophytosis, GCS significantly (P<0.05) improved skin lesions and fungal eradication. GCS (10% and 5%) had higher efficacy compared to the positive control (Tujingpi Tincture). The fungal eradication efficacy exceeds 85% after treatment with GCS (10%, 5%, and 2.5%) on day 14. Conclusion. The GCS has antidermatophytosis effect in dogs, which may be a candidate drug for the treatment of dermatophytosis

    High Resolution Genome Wide Association Studies Reveal Rich Genetic Architectures of Grain Zinc and Iron in Common Wheat (Triticum aestivum L.)

    Get PDF
    Biofortification is a sustainable strategy to alleviate micronutrient deficiency in humans. It is necessary to improve grain zinc (GZnC) and iron concentrations (GFeC) in wheat based on genetic knowledge. However, the precise dissection of the genetic architecture underlying GZnC and GFeC remains challenging. In this study, high-resolution genome-wide association studies were conducted for GZnC and GFeC by three different models using 166 wheat cultivars and 373,106 polymorphic markers from the wheat 660K and 90K single nucleotide polymorphism (SNP) arrays. Totally, 25 and 16 stable loci were detected for GZnC and GFeC, respectively. Among them, 17 loci for GZnC and 8 for GFeC are likely to be new quantitative trait locus/loci (QTL). Based on gene annotations and expression profiles, 28 promising candidate genes were identified for Zn/Fe uptake (8), transport (11), storage (3), and regulations (6). Of them, 11 genes were putative wheat orthologs of known Arabidopsis and rice genes related to Zn/Fe homeostasis. A brief model, such as genes related to Zn/Fe homeostasis from root uptake, xylem transport to the final seed storage was proposed in wheat. Kompetitive allele-specific PCR (KASP) markers were successfully developed for two major QTL of GZnC on chromosome arms 3AL and 7AL, respectively, which were independent of thousand kernel weight and plant height. The 3AL QTL was further validated in a bi-parental population under multi-environments. A wheat multidrug and toxic compound extrusion (MATE) transporter TraesCS3A01G499300, the ortholog of rice gene OsPEZ2, was identified as a potential candidate gene. This study has advanced our knowledge of the genetic basis underlying GZnC and GFeC in wheat and provides valuable markers and candidate genes for wheat biofortification

    Genetic and Functional Dissection of HTRA1 and LOC387715 in Age-Related Macular Degeneration

    Get PDF
    A common haplotype on 10q26 influences the risk of age-related macular degeneration (AMD) and encompasses two genes, LOC387715 and HTRA1. Recent data have suggested that loss of LOC387715, mediated by an insertion/deletion (in/del) that destabilizes its message, is causally related with the disorder. Here we show that loss of LOC387715 is insufficient to explain AMD susceptibility, since a nonsense mutation (R38X) in this gene that leads to loss of its message resides in a protective haplotype. At the same time, the common disease haplotype tagged by the in/del and rs11200638 has an effect on the transcriptional upregulation of the adjacent gene, HTRA1. These data implicate increased HTRA1 expression in the pathogenesis of AMD and highlight the importance of exploring multiple functional consequences of alleles in haplotypes that confer susceptibility to complex traits

    Exome Sequencing Identifies ZNF644 Mutations in High Myopia

    Get PDF
    Myopia is the most common ocular disorder worldwide, and high myopia in particular is one of the leading causes of blindness. Genetic factors play a critical role in the development of myopia, especially high myopia. Recently, the exome sequencing approach has been successfully used for the disease gene identification of Mendelian disorders. Here we show a successful application of exome sequencing to identify a gene for an autosomal dominant disorder, and we have identified a gene potentially responsible for high myopia in a monogenic form. We captured exomes of two affected individuals from a Han Chinese family with high myopia and performed sequencing analysis by a second-generation sequencer with a mean coverage of 30Γ— and sufficient depth to call variants at ∼97% of each targeted exome. The shared genetic variants of these two affected individuals in the family being studied were filtered against the 1000 Genomes Project and the dbSNP131 database. A mutation A672G in zinc finger protein 644 isoform 1 (ZNF644) was identified as being related to the phenotype of this family. After we performed sequencing analysis of the exons in the ZNF644 gene in 300 sporadic cases of high myopia, we identified an additional five mutations (I587V, R680G, C699Y, 3β€²UTR+12 C>G, and 3β€²UTR+592 G>A) in 11 different patients. All these mutations were absent in 600 normal controls. The ZNF644 gene was expressed in human retinal and retinal pigment epithelium (RPE). Given that ZNF644 is predicted to be a transcription factor that may regulate genes involved in eye development, mutation may cause the axial elongation of eyeball found in high myopia patients. Our results suggest that ZNF644 might be a causal gene for high myopia in a monogenic form

    Impact-Initiation Sensitivity of High-Temperature PTFE-Al-W Reactive Materials

    No full text
    Drop-weight tests were conducted to investigate the impact-initiation sensitivity of high-temperature PTFE-Al-W reactive materials. The test results show that the impact-initiation sensitivity of the materials more than doubles with increasing the sample temperature from 25 to 350 &deg;C. Combined with the impact-induced initiation process recorded by high-speed video and the difference between reacted and unreacted residues, the crack-induced initiation mechanism was revealed. The rapid propagation of crack provides a high-temperature and aerobic environment where Al reacts violently to PTFE, which induces the initiation. Moreover, the influence of sample temperature on the sensitivity was discussed and analyzed. The analysis results indicate that the sensitivity shows a temperature interval effect, and 127 and 327 &deg;C are the interval boundaries where the sensitivity changes significantly. The sensitivity may leaps at 127 &deg;C and increases more rapidly in the temperature interval from 127 to 327 &deg;C, but hardly changes after the temperature reaches 327 &deg;C

    Ulam Stability of Jensen Functional Inequality on a Class of Noncommutative Groups

    No full text
    In the paper, we introduce new ρ-functional inequalities related to the Jensen functional equation and some properties. The Hyers-Ulam stability of functional inequalities is proved

    Impact-Initiation Sensitivity of High-Temperature PTFE-Al-W Reactive Materials

    No full text
    Drop-weight tests were conducted to investigate the impact-initiation sensitivity of high-temperature PTFE-Al-W reactive materials. The test results show that the impact-initiation sensitivity of the materials more than doubles with increasing the sample temperature from 25 to 350 Β°C. Combined with the impact-induced initiation process recorded by high-speed video and the difference between reacted and unreacted residues, the crack-induced initiation mechanism was revealed. The rapid propagation of crack provides a high-temperature and aerobic environment where Al reacts violently to PTFE, which induces the initiation. Moreover, the influence of sample temperature on the sensitivity was discussed and analyzed. The analysis results indicate that the sensitivity shows a temperature interval effect, and 127 and 327 Β°C are the interval boundaries where the sensitivity changes significantly. The sensitivity may leaps at 127 Β°C and increases more rapidly in the temperature interval from 127 to 327 Β°C, but hardly changes after the temperature reaches 327 Β°C
    • …
    corecore