556 research outputs found

    Boundaries of Subcritical Coulomb Impurity Region in Gapped Graphene

    Full text link
    The electronic energy spectrum of graphene electron subjected to a homogeneous magnetic field in the presence of a charged Coulomb impurity is studied analytically within two-dimensional Dirac-Weyl picture by using variational approach. The variational scheme we used is just based on utilizing the exact eigenstates of two-dimensional Dirac fermion in the presence of a uniform magnetic field as a basis for determining analytical energy eigenvalues in the presence of an attractive/repulsive charged Coulomb impurity. This approach allows us to determine under which conditions bound state solutions can or can not exist in gapped graphene in the presence of magnetic field. In addition, the effects of uniform magnetic field on the boundaries of subcritical Coulomb impurity region in the massless limit are also analyzed. Our analytical results show that the critical impurity strength decreases with increasing gap/mass parameter, and also that it increases with increasing magnetic field strength. In the massless limit, we investigate that the critical Coulomb coupling strength is independent of magnetic field, and its upper value for the ground-state energy is 0.752.Comment: 9 pages,10 figure

    An Array of Layers in Silicon Sulfides: Chain-like and Ground State Structures

    Full text link
    While much is known about isoelectronic materials related to carbon nanostructures, such as boron nitride layers and nanotubes, rather less is known about equivalent silicon based materials. Following the recent discovery of phosphorene, we herein discuss isoelectronic silicon monosulfide monolayers. We describe a set of anisotropic ground state structures that clearly have a high stability with respect to the near isotropic silicon monosulfide monolayers. The source of the layer anisotropy is related to the presence of Si-S double chains linked by some Si-Si covalent bonds, which lye at the core of the increased stability, together with a remarkable spd hybridization on Si. The involvement of d orbitals brings more variety to silicon-sulfide based nanostructures that are isoelectronic to phosphorene, which could be relevant for future applications, adding extra degrees of freedom.Comment: 16 pages, 6 figure

    Colloquium: Graphene spectroscopy

    Full text link
    Spectroscopic studies of electronic phenomena in graphene are reviewed. A variety of methods and techniques are surveyed, from quasiparticle spectroscopies (tunneling, photoemission) to methods probing density and current response (infrared optics, Raman) to scanning probe nanoscopy and ultrafast pump-probe experiments. Vast complimentary information derived from these investigations is shown to highlight unusual properties of Dirac quasiparticles and many-body interaction effects in the physics of graphene.Comment: 36 pages, 16 figure

    Electronic, optical and transport properties of van der Waals Transition-metal Dichalcogenides Heterostructures: A First-principle Study

    Get PDF
    Two-dimensional (2D) transition-metal dichalcogenide (TMD) MX2_2 (M = Mo, W; X= S, Se, Te) possess unique properties and novel applications. In this work, we perform first-principles calculations on the van der Waals (vdW) stacked MX2_2 heterostructures to investigate their electronic, optical and transport properties systematically. We perform the so-called Anderson's rule to classify the heterostructures by providing the scheme of the construction of energy band diagrams for the heterostructure consisting of two semiconductor materials. For most of the MX2_2 heterostructures, the conduction band maximum (CBM) and valence band minimum (VBM) reside in two separate semiconductors, forming type II band structure, thus the electron-holes pairs are spatially separated. We also find strong interlayer coupling at Γ\Gamma point after forming MX2_2 heterostructures, even leading to the indirect band gap. While the band structure near KK point remain as the independent monolayer. The carrier mobilities of MX2_2 heterostructures depend on three decisive factors, elastic modulus, effective mass and deformation potential constant, which are discussed and contrasted with those of monolayer MX2_2, respectively.Comment: 7 figure

    Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators

    Full text link
    We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 K to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300K and 30K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With lowering of temperature, we find that the positively dispersing electromechanical modes evolve to negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature compensated sensors.Comment: For supplementary information and high resolution figures please go to http://www.tifr.res.in/~deshmukh/publication.htm
    corecore