2,070 research outputs found

    Gene Therapy Using RNAi

    Get PDF

    Resonance-induced sensitivity enhancement method for conductivity sensors

    Get PDF
    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described

    Preparing random state for quantum financing with quantum walks

    Full text link
    In recent years, there has been an emerging trend of combining two innovations in computer science and physics to achieve better computation capability. Exploring the potential of quantum computation to achieve highly efficient performance in various tasks is a vital development in engineering and a valuable question in sciences, as it has a significant potential to provide exponential speedups for technologically complex problems that are specifically advantageous to quantum computers. However, one key issue in unleashing this potential is constructing an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware. Therefore, the split-step quantum walks (SSQW) algorithm was proposed to address this limitation. We facilitate SSQW to design parameterized quantum circuits (PQC) that can generate probability distributions and optimize the parameters to achieve the desired distribution using a variational solver. A practical example of implementing SSQW using Qiskit has been released as open-source software. Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.Comment: 11 pages, 7 figure

    Merged Search Algorithms for Radio Frequency Identification Anticollision

    Get PDF
    Nowadays, the Radio Frequency Identification (RFID) system enables the control of many devices over an open communication infrastructure ranging from a small home area network to the global Internet. Moreover, a variety of consumer products are tagged with remotely low-cost readable identification electromagnetic tags to replace Bar Codes. Applications such as automatic object tracking, inventory and supply chain management, and Web appliances were adopted for years in many companies. The arbitration algorithm for RFID system is used to arbitrate all the tags to avoid the collision problem with the existence of multiple tags in the interrogation field of a transponder. A splitting algorithm which is called Binary Search Tree (BST) is well known for multitags arbitration. In the current study, a splitting-based schema called Merged Search Tree is proposed to capture identification codes correctly for anticollision. Performance of the proposed algorithm is compared with the original BST according to time and power consumed during the arbitration process. The results show that the proposed model can reduce searching time and power consumed to achieve a better performance arbitration

    High Impact IS Papers and Researchers in the Pacific Asia Region

    Get PDF
    As research in information systems (IS) becomes increasingly popular, it is interesting to know the impact of research from the Pacific Asia region and who has contributed more high impact papers. With the assistance of SSCI/SCIE database of Web of Science and Google Scholar, this study investigates the impact of Pacific Asian researchers and their papers by the citation numbers of their published papers in 21 IS journals. Common keywords and theories adopted in the most cited papers are also examined. The results indicate that scholars in Hong Kong, Australia, and Singapore are major contributors in the region. MIS Quarterly publishes most highly cited papers. Papers co-authored across regions are more likely to create high citations. Our findings provide insights into how research reports from Pacific Asian authors have influenced the development of knowledge in information systems. Available at: https://aisel.aisnet.org/pajais/vol1/iss1/8

    Underground Burning of Jharia Coal Mine (India) and Associated Surface Deformation Using InSAR Data

    Get PDF
    The underground burning in the Jharia coal mine (JCM) in India is a highly devastating environmental hazard inducing various adverse consequences. In the present study, we carried out time series analyses based on Interferometric Synthetic Aperture Radar (InSAR) and land surface temperature (LST) to study the environmental risk. First, a permanent scatterer (PS) time series analysis using Sentinel-1 images over three years was performed to detect the spatio-temporal distribution of ground deformation. Comparison of ground thermal anomaly clearly delineated the subsidence spots associated with the oxygen supply to combustion areas. On the contrary, few deformations were mapped showing pronounced uplift up to 10 mm/year compared with the horizontal creeping associated with underground fire activities. Such ground deformation and thermal anomaly patterns have never been observed. We modeled these observations from satellite data as a consequence of a strong pressurized source that induces surface migration in the coal mine and surrounding geological formations. Further, detailed investigations and modeling are required to mitigate the impact of hazards associated with the underground fires at different locations in the JCM
    corecore