5,684 research outputs found

    Top Quark Rare Decays via Loop-Induced FCNC Interactions in Extended Mirror Fermion Model

    Full text link
    Flavor changing neutral current (FCNC) interactions for a top quark tt decays into XqXq with XX represents a neutral gauge or Higgs boson, and qq a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10βˆ’410^{-4} from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process tβ†’Zct \to Zc for a wide range of parameter space with branching ratios varying from 10βˆ’610^{-6} to 10βˆ’810^{-8}, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without RR-parity, and extra dimension model.Comment: 30 pages, 8 figures, 2 tables and 1 appendix. Version to appear in NP

    Universal critical properties of the Eulerian bond-cubic model

    Full text link
    We investigate the Eulerian bond-cubic model on the square lattice by means of Monte Carlo simulations, using an efficient cluster algorithm and a finite-size scaling analysis. The critical points and four critical exponents of the model are determined for several values of nn. Two of the exponents are fractal dimensions, which are obtained numerically for the first time. Our results are consistent with the Coulomb gas predictions for the critical O(nn) branch for n<2n < 2 and the results obtained by previous transfer matrix calculations. For n=2n=2, we find that the thermal exponent, the magnetic exponent and the fractal dimension of the largest critical Eulerian bond component are different from those of the critical O(2) loop model. These results confirm that the cubic anisotropy is marginal at n=2n=2 but irrelevant for n<2n<2

    TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware Tucker Decomposition

    Full text link
    Tucker decomposition is one of the SOTA CNN model compression techniques. However, unlike the FLOPs reduction, we observe very limited inference time reduction with Tuckercompressed models using existing GPU software such as cuDNN. To this end, we propose an efficient end-to-end framework that can generate highly accurate and compact CNN models via Tucker decomposition and optimized inference code on GPUs. Specifically, we propose an ADMM-based training algorithm that can achieve highly accurate Tucker-format models. We also develop a high-performance kernel for Tucker-format convolutions and analytical performance models to guide the selection of execution parameters. We further propose a co-design framework to determine the proper Tucker ranks driven by practical inference time (rather than FLOPs). Our evaluation on five modern CNNs with A100 demonstrates that our compressed models with our optimized code achieve up to 3.14X speedup over cuDNN, 1.45X speedup over TVM, and 4.57X over the original models using cuDNN with up to 0.05% accuracy loss.Comment: 12 pages, 8 figures, 3 tables, accepted by PPoPP '2

    Weak localization and electron-electron interactions in Indium-doped ZnO nanowires

    Full text link
    Single crystal ZnO nanowires doped with indium are synthesized via the laser-assisted chemical vapor deposition method. The conductivity of the nanowires is measured at low temperatures in magnetic fields both perpendicular and parallel to the wire axes. A quantitative fit of our data is obtained, consistent with the theory of a quasi-one-dimensional metallic system with quantum corrections due to weak localization and electron-electron interactions. The anisotropy of the magneto-conductivity agrees with theory. The two quantum corrections are of approximately equal magnitude with respective temperature dependences of T^-1/3 and T^-1/2. The alternative model of quasi-two-dimensional surface conductivity is excluded by the absence of oscillations in the magneto-conductivity in parallel magnetic fields.Comment: 13 pages, Corrected forma

    On the Origin of the Strong Optical Variability of Emission-line Galaxies

    Full text link
    Emission-line galaxies (ELGs) are crucial in understanding the formation and evolution of galaxies, while little is known about their variability. Here we report the study on the optical variability of a sample of ELGs selected in the COSMOS field, which has narrow-band observations in two epochs separated by ≳\gtrsim 12 years. This sample was observed with Suprime-Cam (SC) and Hyper Suprime-Cam (HSC) on the SubaruSubaru telescope in NB816 and iβ€²/ii'/i bands, respectively. After carefully removing the wing effect of a narrow-band filter, we check the optical variability in a sample of 181 spectroscopically confirmed ELGs. We find that 0 (0/68) Ha emitters, 11.9% (5/42) [OIII] emitters, and 0 (0/71) [OII] emitters show significant variability (βˆ£Ξ”mNB∣β‰₯3 σΔmNB,AGN=0.20 mag|\Delta m_{NB}| \geq 3\,\sigma_{\Delta m_{NB,AGN}} = 0.20\, mag) in the two-epoch narrow-band observations. We investigate the presence of active galactic nucleus (AGN) in this variable ELG (var-ELG) sample with three methods, including X-ray luminosity, mid-infrared activity, and radio-excess. We find zero bright AGN in this var-ELG sample, but cannot rule out the contribution from faint AGN. We find that SNe could also dominate the variability of the var-ELG sample. The merger morphology shown in the HST/F814W images of all the var-ELG sample is in agreement with the enhancement of star formation, i.e., the SNe activity.Comment: 20 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Discovery of Five Green Pea Galaxies with Double-peaked Narrow [OIII] Lines

    Full text link
    Although double-peaked narrow emission-line galaxies have been studied extensively in the past years, only a few are reported with the green pea galaxies (GPs). Here we present our discovery of five GPs with double-peaked narrow [OIII] emission lines, referred to as DPGPs, selected from the LAMOST and SDSS spectroscopic surveys. We find that these five DPGPs have blueshifted narrow components more prominent than the redshifted components, with velocity offsets of [OIII]Ξ»\lambda5007 lines ranging from 306 to 518 km sβˆ’1\rm km\, s^{-1} and full widths at half maximums (FWHMs) of individual components ranging from 263 to 441 km sβˆ’1\rm km\, s^{-1}. By analyzing the spectra and the spectral energy distributions (SEDs), we find that they have larger metallicities and stellar masses compared with other GPs. The HΞ±\alpha line width, emission-line diagnostic, mid-infrared color, radio emission, and SED fitting provide evidence of the AGN activities in these DPGPs. They have the same spectral properties of Type 2 quasars. Furthermore, we discuss the possible nature of the double-peaked narrow emission-line profiles of these DPGPs and find that they are more likely to be dual AGN. These DPGP galaxies are ideal laboratories for exploring the growth mode of AGN in the extremely luminous emission-line galaxies, the co-evolution between AGN and host galaxies, and the evolution of high-redshift galaxies in the early Universe.Comment: 13 pages, 8 figures, 3 tables; Accepted for publication in MNRA

    Measurement of Near-Field Electromagnetic Emissions and Characterization Based on Equivalent Dipole Model in Time-Domain

    Get PDF
    In this article, a method for representing electromagnetic emissions from a device under test (DUT) using an equivalent time dependent dipole array model deduced from the time-domain near-field scanned tangential magnetic fields is proposed. First, a three-dimensional (3-D) time-domain near-field scanning system is established to measure the tangential magnetic fields emitted from DUTs which are a transmission line above a ground plane and a printed circuit board (PCB) with several microstrips, respectively. For time-domain measurements, two magnetic field probes are calibrated over a broad bandwidth for both amplitude and phase to obtain their complex probe factors. Then, the measured magnetic fields are utilized to construct an equivalent time dependent dipole array model to represent the electromagnetic sources of the DUT. Parameters of the time dependent equivalent dipoles are directly calculated by fitting to the measured magnetic fields. The effects of different number of dipoles on the accuracy of the reconstructed magnetic fields from the PCB are studied. The reconstructed equivalent dipoles of the DUTs can be used to predict the electromagnetic fields at other observation levels. The results predicted by the equivalent dipole model are in agreement with the simulated and measured results
    • …
    corecore