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Abstract

We propose a deep hashing framework for sketch re-
trieval that, for the first time, works on a multi-million scale
human sketch dataset. Leveraging on this large dataset,
we explore a few sketch-specific traits that were otherwise
under-studied in prior literature. Instead of following the
conventional sketch recognition task, we introduce the novel
problem of sketch hashing retrieval which is not only more
challenging, but also offers a better testbed for large-scale
sketch analysis, since: (i) more fine-grained sketch feature
learning is required to accommodate the large variation-
s in style and abstraction, and (ii) a compact binary code
needs to be learned at the same time to enable efficient
retrieval. Key to our network design is the embedding of
unique characteristics of human sketch, where (i) a two-
branch CNN-RNN architecture is adapted to explore the
temporal ordering of strokes, and (ii) a novel hashing loss
is specifically designed to accommodate both the temporal
and abstract traits of sketches. By working with a 3.8M
sketch dataset, we show that state-of-the-art hashing mod-
els specifically engineered for static images fail to perform
well on temporal sketch data. Our network on the other
hand not only offers the best retrieval performance on var-
ious code sizes, but also yields the best sketch recognition
performance when re-purposed for classification. Such su-
perior retrieval and classification performances effectively
demonstrate the benefit of our sketch-specific design.

1. Introduction
Sketches are different to photos. They exhibit a high-

level of abstraction yet are surprisingly illustrative. With
just a few strokes, they are able to encode an appropriate
level of semanticness that depicts objects and communicate
stories (e.g. ancient cave drawings). Such unique charac-
teristics of sketches, together with the prevalence of touch-
screen devices, to a large extent drove the recent surge of
sketch research. Problems studied so far range from s-
ketch recognition [3, 11, 30], sketch-based image retrieval
(SBIR) [29, 20], to sketch synthesis [12].

Despite great strides made, a major obstacle facing al-
l sketch research is the lack of freely available sketch da-
ta. Compared with photos where million-scale datasets had
been readily accessible for almost a decade (e.g. ImageNet
[2]), all aforementioned research worked with sub-million
level crowd-sourced sketch datasets (20k for TU-Berlin [3]
and 75k for Sketchy [20]). These datasets served as key en-
ablers for the community, though have very recently started
to bottleneck the progress of sketch research – sketch recog-
nition performance had already gone far beyond human-
level [30] on TU-Berlin [3], and steadily approaching hu-
man performance [18] for the problem of SBIR on Sketchy
[20].

In particular, two unique traits of human sketches had
been mostly overlooked: (i) sketches are highly abstract and
iconic, whereas photos are pixel perfect depictions, (ii) s-
ketching is a dynamic process other than a mere collection
of static pixels. Such oversights can be partially attribut-
ed to the lack of a large and diverse dataset of stroke-level
human sketches, since more data samples are required to
broadly capture (i) the substantial variances on visual ab-
straction, and (ii) the highly complex temporal stroke con-
figurations – an apple might look like an apple once drawn
(though more abstract than photos), there is more than one
way of drawing it. The seminal work of [30] on sketch
recognition tackled these problems to some extent yet were
limited in that (i) sketches are treated as static pixelmap-
s, where deep architecture for feature learning is limited to
variants of photo CNNs, and (ii) temporal ordering infor-
mation are modeled coarsely by temporally segmenting one
sketch into three separate pixelmaps, which are then encod-
ed using a multi-branch CNN. The very recent work of [5]
was the first to fully acknowledge the temporal nature of
sketches, and proposed a RNN-based generative model to
synthesize novel sketches from scratch. In this paper, we
combine RNN stroke modeling with conventional CNN un-
der a dual-branch setting to learn better sketch feature rep-
resentations. However, the problem of visual abstraction,
especially how it can be accommodated under a large-scale
retrieval setting remains unsolved.

In this paper, for the first time, we leverage on a newly

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#2763

CVPR
#2763

CVPR 2018 Submission #2763. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

QuickDraw

TU-Berlin

Figure 1. Sample sketches from QuickDraw-3.8M and TU-Berlin.

released multi-million human sketch dataset [5], and intro-
duce the novel problem of sketch hashing retrieval (SHR).
Different to the conventional task of sketch recognition
where classification is usually performed by computing fea-
ture distances in Euclidean space [30], given a query sketch,
SHR aims to compute an exhaustive ranking of all sketch-
es in a very large test gallery. It is thus a more difficult
problem than sketch recognition, since (i) more discrimina-
tive feature representations are needed to accommodate the
much larger variations on style and abstraction , and mean-
while (ii) a compact binary code needs to be learned to fa-
cilitate efficient large-scale retrieval. Importantly, the avail-
ability of such a large dataset enabled us to better explore
the aforementioned sketch-specific traits of being highly ab-
stract and sequential in nature. In particular, we fully exam-
ine the temporal ordering of strokes through a two-branch
CNN-RNN network, and address the abstraction problem
by proposing a novel hashing loss that enforces more com-
pact feature clusters for each sketch category in Hamming
space.

More specifically, we first construct a dataset of
3,829,500 human sketches, by randomly sampling from ev-
ery category of the Google QuickDraw dataset [5], which
we term as “QuickDraw-3.8M”. This dataset is highly noisy
when compared with TU-Berlin, for that (i) users had only
20 seconds to draw, and (ii) no specific post-processing was
performed. Figure 1 offers a visual comparison between the
two datasets. We then analyze the intrinsic data traits of s-
ketch and design a novel end-to-end deep hashing model to
conduct fast retrieval. The main contributions of this paper
can be summarized as:

• For the first time, we introduce the problem of sketch
hashing retrieval on a multi-million scale human s-
ketch dataset, and propose a deep hashing network
that directly accommodates the key characteristics of
human sketch. We show that our network is able
to outperform state-of-the-art alternatives specifically
designed for photo-photo and sketch-photo retrieval,
highlighting the advantage of our sketch-specific de-
sign. Moreover, our network also achieves state-of-
the-art performance when re-purposed for the task of

sketch recognition.

• We propose a novel multi-branch CNN-RNN architec-
ture that specifically encode the temporal ordering in-
formation of sketches to learn a more fine-grained fea-
ture representation. We find that stroke-level temporal
information is indeed helpful in sketch feature learning
in that it alone can outperform CNN features for the s-
ketch recognition task, and offers the best performance
when combined with CNN features.

• We design a novel hashing loss to accommodate the
abstract nature of sketches, especially on such a large
dataset where noise is also present. More specifically,
we propose a sketch center loss to learn more compact
feature clusters for each object category and in turn
improve retrieval performance.

The rest of the paper is organized as follows: Section 2
briefly summarizes related work. Section 3 describes our
proposed deep hashing model for large-scale sketch re-
trieval. Experimental results and discussion are presented
in Section 4. Finally, we draw some conclusions in Sec-
tion 5.

2. Related Work
Sketch Dataset Collecting sketches is hard, and even

harder when the sketch is asked to draw based on the men-
tal imaginary other than an abstract concept. This consti-
tutes the main reason stalling the systematic and scalable
research on sketches. Until the proliferation of touchscreen
devices, few middle-scale sketch datasets [3, 29, 23, 20]
have been collected. This is possible by resorting to crowd-
sourcing platform (e.g. Amazon Mechanical Turk) to ask
the participant either draw by hand or slide with a mouse.
However still, these dataset size normally ranges from hun-
dreds to thousands, orders of magnitude smaller than other
traditional meta vision datasets, i.e. ImageNet [2], thus in-
feasible for large-scale deep hashing exploration that are in-
herently data-hungry. Very recently, this problem has been
greatly alleviated by Ha and Eck [5], which contributed a
dataset containing 50 millions of sketches crossing 345 cat-
egories. However, these sketches collected by the world-
wide participants without any manual supervision contain
considerable amount of noisy samples, requiring special
care to take with.

Sketch Recognition A few shallow hand-crafted fea-
ture learning methods [3, 11] have been proposed for sketch
recognition task, where they used support vector machine
(SVM) as the classifier and differed only in what hand-
crafted features borrowed from photos are used as repre-
sentation. In particular, Li et al. [11] demonstrated that
histogram of oriented gradients (HOG) generally outper-
formed other local features, while by fusing them together

2
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Quantization and Encoding Layer

Sketch Center Loss

s1: x1, y1, 1, 0

s2: x2, y2, 1, 0

sT: xT, yT, 0, 1
Cross Entropy Loss

Hashing Quantization Loss

Sketch Stroke Sequence Input RNN Branch

Sketch Picture Input

CNN Branch

Loss Function

[h1,hT]s1

s2

sT

[h2,hT-1]

[hT,h1]

Figure 2. An illustration of our two-branch CNN-RNN deep sketch hashing retrieval network. Best viewed in color.

under multiple kernel learning further improved the perfor-
mance. The ground-breaking work of Yu et al. [31], for
the first time beat human performance on sketch recognition
task by utilizing the discriminative power of a deep convo-
lutional neural network, where subsequent work exploited
stroke-level temporal information either from heuristic da-
ta augmentation perspective [30] or a learned model lev-
el [21]. In this paper, we advance the sketch recognition
problem one step forward – given a sketch query, efficiently
and accurately retrieve semantically-similar sketches from
million-scale gallery within a compact deep hashing space,
termed sketch hashing retrieval.

Deep Hashing Learning Hashing learning is an im-
portant research topic for fast image retrieval, where
conventional hashing methods (Locality-Sensitive Hashing
(LSH) [1], Spectral Hashing (SH) [26], Iterative Quanti-
zation (ITQ) [4]) mainly involve learning projections and
quantization strategies, which usually take hand-crafted fea-
tures as image representation. With deep learning show-
ing remarkable effects [10, 24, 6, 7] and sweeping across
computer vision tasks, deep hashing learning also found it-
s way to this garden of bliss [28, 14, 22], showing addi-
tional superiority of better preserving the semantic informa-
tion compared with shallow methods. In the initial setting,
feature representation and hashing coding were learned in
separate stages [28], where subsequent work [14, 32, 15]
found more elegant performance through joint end-to-end
training.

To our best knowledge, only one previous work [16]
has specifically designed deep hashing framework target-
ing on sketch domain, where they introduced a semi-
heterogeneous deep architecture by incorporating the cross-
view similarity and cross-category semantic loss and pre-

sented impressive results over several baselines. However,
their limitations mainly lay in that (i) the temporal infor-
mation coming inherently from sketch drawings is neglect-
ed and (ii) the dataset [20] they are evaluating on is small,
leaving whether there are additional challenges on million-
scale [5] dataset unknown, where in this paper we actively
address the two issues.

3. Methodology

3.1. Problem Formulation

Let K = {Kn = (Pn,Sn)}Nn=1 be N sketch sample
pairs cross L possible categories and Y = {yn}Nn=1 be their
respective category labels. Each sketch sample Kn consist-
s of a sketch Pn in raster pixel space and a correspond-
ing sketch stroke sequence Sn. We aim to learn a mapping
M : K → {0, 1}H×N , which maps sketches into a low
dimensional (H dimension) space fn that further translat-
ed into H-bit binary codes B = {bn}Nn=1 ∈ {0, 1}H×N ,
while maintaining relevancy in accordance with the seman-
tic and visual similarity amongst sketch data.

3.2. Twobranch CNNRNN Network

Overview As previously stated, learning discriminative s-
ketch features is a very challenging task due to the high
degree of variations in style and abstraction. This prob-
lem is made worse under a large-scale retrieval setting s-
ince better feature representations are needed for more fine-
grained feature comparison. Despite shown to be successful
on a much smaller sketch dataset [30], CNN-based network
completely abandons the natural stroke-level temporal in-
formation of human sketches, which can now be modeled
by a RNN network, thanks to the ground-breaking work by

3
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[5]. In this work, we, for the first time, propose to combine
the best from the both world for human sketches – utiliz-
ing CNN to extract abstract high-level concepts and RNN
to model human sketching temporal orders. With addition-
al discriminative power (temporal cue) injected in, we hope
this can lead to better feature learning.
Two-branch Late-fusion As illustrated in Figure 2, our
two-branch encoder consists of three sub-modules: (1) a
CNN encoder takes in a raster pixel sketch and translates
into a high-dimensional space; (2) a RNN encoder takes in a
vector sketch and outputs its final time-step state; (3) branch
interaction via a late-fusion layer by concatenation. This
enables our learned feature to benefit from both vector and
raster sketch.
Quantization Encoding layer After the final fusion lay-
er, we have to encode that deep feature into the low-
dimensional real-valued hashing feature fn (one fully con-
nected layer with sigmoid activation), which will be further
transformed to the hashing code, bn. The transformation
function goes as follows:

bn = sgn(fn − 0.5), n ∈ (1, N). (1)

Learning Objective To obtain the hashing feature fn and
hashing code bn, we could train the network end-to-end
using two common losses similar to those found in image
hashing networks [14]. The first comes with the cross en-
tropy loss (CEL) for Kn calculated on L-way softmax:

Lcel =
1

N

N∑
n=1

− log
eW

T
yn

fn+byn∑L
j=1 e

WT
j fn+bj

, (2)

where Wj ∈ RH is the jth column of the weights W ∈
RH×L between the quantization-encoding layer and L-way
softmax outputs. The second loss is the quantization loss
(QL) that is used to reduce the error caused by quantization-
encoding:

Lql = ∥bn − fn∥22, s.t. bn ∈ {0, 1}H , (3)

3.3. Sketch Center Loss

In theory, these two losses should perform reasonably
well on discriminating category-level semantics, however,
our large-scale sketch dataset presents an unique challenges
– sketch are highly abstract, often making semantically d-
ifferent categories to exhibit similar appearance (see Figure
3(a) for an example of ‘dog’ vs. ‘pig’). We need to make
sure such abstract nature of sketches do not hinder overall
retrieval performance.

The common center loss (CL) was proposed in [27] to
tackle such a problem by introducing the concept of class
centers, cyn , to characterize the intra-class variations. Class

centers should be updated as deep features change, in other
words, the entire training set should be taken into account
and features of every class should be averaged in each it-
eration. This is clearly unrealistic and normally compro-
mised by updating only within each mini-batch. This prob-
lem is even more salient under our sketch hashing retrieval
setting – (1) for million-scale hashing, updating common
center within each mini-batch can be highly inaccurate and
even misleading (as shown in later experiments), and this
problem is worsened by the abstract nature of sketches in
that only seeing sketches within one training batch doesn’t
necessarily provide useful and representative gradients for
class centers; (2) despite of more compact internal category
structures (Figure 3(b)) with common center loss, there is
no explicit constraint to set apart between each, as a direct
comparison with Figure 3(c).

These issues call for a sketch-specific center loss that is
able to deal with million-scale hashing retrieval. For sketch
hashing, we need compact and discriminative features to
aggregate samples belonging to the same category and seg-
regate the visually confusing categories. Thus, an natural
intuition would be: is it possible if we can find a fixed but
representative center feature for each class, so to avoid the
computational complexity during training, and meanwhile
enforcing semantics between sketch categories.

We propose sketch center loss that is specifically de-
signed for million-scale sketch hashing retrieval. This is
done by (i) first pretraining CNN-RNN separately for sketch
recognition task and then fine-tuning with our full model,
both with softmax cross entropy loss only; (ii) obtain class
feature center cyn by calculating the mean of the hashing
feature fn for the noise-removal sketches (detailed later) of
that class based on the pretrained model. By doing so, in
the final fine-tuning stage, we train end-to-end with a fixed
center for each class, thus providing meaningful gradients
during each training iteration, and we empirically find a sig-
nificant performance boost under this sketch-specific center
loss. We hence define our sketch center loss as:

Lscl =
1

N

N∑
n=1

∥fn − cyn∥22 , (4)

Noise Removal with Image Entropy Key ingredient to a
successful sketch center loss is the guarantee of non-noisy
data (outliers), as it will significantly affect the class feature
centers. However, datasets collected with crowdsourcing
without manual supervision are inevitable to noise. Here we
propose a noisy data removal technique to greatly alleviate
such issues by resorting to image entropy. We define image
entropy for sketch data as:

H =
∑

i=0,255

−Pi logPi , (5)
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(a) cross entropy loss (b) cross entropy loss + common center loss (c) cross entropy loss + sketch center loss

Figure 3. Geometric interpretation of sketch feature layout obtained by different loss function. The dashed line denotes the softmax decision
boundary. The dot dashed circles denote the respective clustering of two confusing classes (dog and pig). The red and green patterns denote
the outliers of dog and pig, respectively. The red solid square and the green solid triangle denote the feature centers. Best viewed in color.

0.0977 0.0984 0.0987 0.0999

0.1327 0.1365 0.1438 0.1439

0.2668 0.2947 0.4167 0.4472

Figure 4. Some “star” samples randomly selected from our train-
ing set and their corresponding entropy values. The stars in
first and third lines are outliers or noise points (entropy ∈
(0, 0.1051) ∪ (0.1721, 1)). The stars in the second line are normal
values (entropy ∈ (0.1051, 0.1721)).

where Pi is the proportion of the gray pixel values i in each
sketch.

Now given a category of sketch, we can get entropy for
each sketch and use Kernel Smoothing Density Estimation
(KSDE) to calculate its probability density function (PDF).
We empirically find keeping the middle 90% of the PDF
gives us best results. In Figure 4, we visualize the randomly
sampled star samples and its entropy values. As can be seen
that low entropy sketches tend to be more abstract, yet high
entropy ones tend to be more messy, while the middle range
ones depict good looking stars.
Full Learning Objective By combining the above, our

full objective becomes:

Lfull = Lcel + λqlLql + λsclLscl, (6)

where λql, λscl control the relative importance of each loss.

4. Experiments
4.1. Datasets and Settings

Dataset Splits and Preprocessing Google QuickDraw
dataset [5] contains 345 object categories with more than
100,000 free-hand sketches for each category. Despite the
large-scale sketches publicly available, we empirically find
out that a number of around 10,000 sketches suffices for a
sufficient representation of each category and thus random-
ly choose 9000, 1000 from which for training and valida-
tion respectively. For evaluation, we form our query and
retrieval gallery set by randomly choosing 100 and 1000 s-
ketches from each category. A detailed illustration of the
dataset split can be found at Table 1. Overall, this con-
stitutes an experimental dataset of 3,829,500 sketches, s-
tanding itself on a million-scale analysis of sketch spe-
cific hashing problem, an order of magnitude larger than
previous state-of-the-art research [16], which we term as
“QuickDraw-3.8M”. We scale the raster pixel sketch to
224 × 224 × 3, with each brightness channel tiled equal-
ly, while processing the vector sketch same as with [5],
with one critical exception – rather than treating pen state
as a sequence of three binary switches, i.e. continue ongo-
ing stroke, start a new stroke and stop sketching, we reduce
to two states by eliminating the sketch termination signal
for faster training, leading each time-step input to the RNN
module a four-dimensional input (point coordinates + pen
state).
Staged Pretraining We implement our model as staged
training due to the inherently different internal structures
and learning schemes between CNN-based and RNN-based

5
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Splits Number per cate Amount
Training 9000 9000× 345 = 3105000

Validation 1000 1000× 345 = 345000
Retrieval 1000 1000× 345 = 345000

Query 100 100× 345 = 34500

Table 1. Dataset Splits on QuickDraw [5] for our experiments.

models and the necessary request for representative and ro-
bust class centers: (1) Separately pretrain the CNN, RNN
branch on the QuickDraw-3.8M dataset with softmax cross
entropy loss; (2) Fine-tune our full model end-to-end with
softmax cross entropy loss; (3) Fine-tune our full model
with softmax entropy loss, sketch center loss and quanti-
zation loss.
Implementation Details Our RNN-based encoder uses
bidirectional Gated Recurrent Units with two layers, with
a hidden size of 512 for each layer, and the CNN-based
encoder follows the AlextNet [10] architecture with ma-
jor difference at removing the local response normalization
for faster training. We implement our model on one single
Pascal TitanX GPU card, where for each pretraining stage,
we train for 20, 5, 5 epochs, taking about 20, 5, 10 hours re-
spectively. We set the importance weights λscl = 0.01 and
λql = 0.0001 during training and find this simple strategy
works well. The model is trained end to end using the Adam
optimizer [9]. The learning rate starts at 0.01 and decays
exponentially every 10 epochs by one order of magnitude.
We report the mean average precision (MAP) and precision
at top-rank 200 (precision@200), same with previous deep
hashing methods[14, 32, 15, 16] for a fair comparison.

4.2. Competitors

We compare our sketch hashing retrieval model with sev-
eral state-of-the-art deep hashing approaches and for a fair
comparison, we evaluate all competitors under same crite-
ria.
DLBHC [14]: We compare with replacing our two-branch
CNN-RNN module with a single-branch CNN module,
where softmax cross entropy loss is used for joint feature
and hashing code learning.
DSH-Supervised[15]: This also corresponds to a single-
branch CNN model, but with noticeable difference in how
to model the category-level discrimination, where pairwise
contrastive loss is used based on the semantic pairing labels.
We generate online image pairs within each training batch.
DSH-Sketch[16]: This is proposed to specifically target on
modeling the sketch-photo cross-domain relations with a
semi-heterogeneous network. To fit in our setting, we adopt
the single-branch paradigm and their semantic factorization
loss only, where word vector is assumed to represent the
visual category. We keep other settings the same.

Moreover, we compare six unsupervised (Princi-
pal Component Analysis Iterative Quantization (PCA-

ITQ) [4], Locality-Sensitive Hashing (LSH) [1], Spec-
tral Hashing (SH) [26], Locality-Sensitive Hashing from
Shift-Invariant Kernels (SKLSH) [19], Density Sensitive
Hashing (DSH) [8], Principal Component Analysis Hash-
ing (PCAH) [25]) and two supervised (Supervised Discrete
Hashing (SDH) [22], Canonical Correlation Analysis Iter-
ative Quantization (CCA-ITQ) [4]) shallow hashing meth-
ods, where deep features are fed into directly for learning.
It’s noteworthy that running each of the above eight tasks
needs about 100 − 200 GB memory. Limited by this, we
train a smaller model and use 256d deep feature (extracted
from the fusion layer) as inputs.

4.3. Results and Discussions

Comparison against Deep Hashing Competitors: We
compare our full model and the three state-of-the-art deep
hashing methods. Table 2 shows the results for sketch hash-
ing retrieval under both metrics. We make the following
observations: (i) Our model consistently outperforms pre-
vious state-of-the-art deep hashing methods by a significant
margin, with 6.11/8.36 and 5.50/4.79 percent improvements
(MAP/Precision@200) over the best performing competi-
tor at 16-bit and 64-bit respectively. (ii) The gap between
our model and DLBHC suggests the benefits of combin-
ing segment-level temporal information exhibited in a vec-
tor sketch with static pixel visual cues, the basis forming
our CNN-RNN two-branch network, which may credit to
(1) despite human tends to draw abstractly, they do share
certain category-level coherent drawing styles, i.e. starting
with a circle when sketching a sun, such that introducing ad-
ditional discriminative power; (2) CNN suffers from sparse
pixel image input [31] but prevails at building conceptual
hierarchy [17], where RNN-based vector input brings the
complements. (iii) DSH-Supervised is unsuitable for re-
trieval across a large number of categories due to the in-
cident imbalanced input of positive and negative pairs [13].
This shows the importance of metric selection under uni-
versal (hundreds of categories) million-scale sketch hashing
retrieval, where softmax cross entropy loss generally works
better, while pairwise contrastive loss hardly constrain the
feature representation space and word vector can be mis-
leading, i.e. basketball and apple are similar in terms of
shape abstraction, but pushing further away under seman-
tic distance.
Comparison against Shallow Hashing Competitors: In
Table 3, we report the performance on several shallow hash-
ing competitors, as a direct comparison with the deep hash-
ing methods in Table 2, where we can observe that (i) shal-
low hashing learning generally fails to compete with joint
end-to-end deep learning, where supervised shallow meth-
ods outperform unsupervised competitors; (ii) Under the
shallow hashing learning context, deep features outperfor-
m shallow hand crafted features by one order of magnitude.
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No. Model Mean Average Precision Precision @200
16 bits 24 bits 32 bits 64 bits 16 bits 24 bits 32 bits 64 bits

1 DLBHC [14] 0.5453 0.5910 0.6109 0.6241 0.5142 0.5917 0.6169 0.6403
2 DSH-Supervised [15] 0.0512 0.0498 0.0501 0.0531 0.0510 0.0512 0.0501 0.0454
3 DSH-Sketch [16] 0.3855 0.4459 0.4935 0.6065 0.3486 0.4329 0.4823 0.6040

4 Our+CEL 0.5969 0.6196 0.6412 0.6525 0.5817 0.6292 0.6524 0.6730
5 Our+CEL+CL 0.5567 0.5856 0.5911 0.6136 0.5578 0.6038 0.6140 0.6412
6 Our+CEL+SCL 0.6016 0.6371 0.6473 0.6767 0.5928 0.6298 0.6543 0.6875

7 Our+CEL+SCL+QL (Full) 0.6064 0.6388 0.6521 0.6791 0.5978 0.6324 0.6603 0.6882

Table 2. Comparison with state-of-the-art deep hashing methods and our model variants on on QuickDraw-3.8M retrieval gallery.

Unsupervised Supervised
PCA-ITQ [4] LSH [1] SH [26] SKLSH [19] DSH [8] PCAH [25]) SDH [22] CCA-ITQ [4]

HOG

16 bits 0.0222 0.0110 0.0166 0.0096 0.0186 0.0166 0.0160 0.0185
24 bits 0.0237 0.0121 0.0161 0.0105 0.0183 0.0161 0.0186 0.0195
32 bits 0.0254 0.0128 0.0156 0.0108 0.0224 0.0155 0.0219 0.0208
64 bits 0.0266 0.0167 0.0157 0.0127 0.0243 0.0146 0.0282 0.0239

deep feature
16 bits 0.4414 0.3327 0.4177 0.0148 0.3451 0.4375 0.5781 0.3638
24 bits 0.5301 0.4472 0.5102 0.0287 0.4359 0.5224 0.6045 0.4623
32 bits 0.5655 0.5001 0.5501 0.0351 0.4906 0.5576 0.6133 0.5168
64 bits 0.6148 0.5801 0.5956 0.0605 0.5718 0.6056 0.6273 0.5954

Table 3. Comparison with shallow hashing competitors on QuickDraw-3.8M retrieval gallery.

model Sketch-a-Net [30] ResNet 50 [6] our RNN branch our CNN branch our RNN&CNN + CEL our RNN&CNN + CEL + SCL

accuracy 0.6871 0.7864 0.7788 0.7376 0.7949 0.8051

Table 4. Comparison with state-of-the-art recognition models and our model variants on sketch recognition task on QuickDraw-3.8M
retrieval gallery.
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(c) Precision-Recall curves @32 bits
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(d) Precision-Recall curves @64 bits

Figure 5. Precision recall curves on QuickDraw-3.8M retrieval
gallery. Best viewed in color.

Component Analysis: We have evaluated the effective-
ness of different components of our model in Table 2.
Specifically, we construct our model training with d-
ifferent loss combinations, including softmax cross en-

len dist

model
Our+CEL Our+CEL+CL Our+CEL+SCL Our+CEL+SCL+QL (Full)

16 bits

d1 0.7501 0.5297 0.5078 0.5800
d2 4.9764 3.2841 4.2581 4.8537

d1/d2 0.1665 0.1721 0.1257 0.1290
MAP 0.5969 0.5567 0.6016 0.6064

24 bits

d1 1.2360 0.8285 0.6801 0.8568
d2 6.1266 4.0388 5.0221 6.2243

d1/d2 0.2017 0.2051 0.1354 0.1377
MAP 0.6196 0.5856 0.6374 0.6388

32 bits

d1 2.0066 1.5124 1.0792 1.2468
d2 8.9190 7.3120 7.5340 8.6675

d1/d2 0.2250 0.2068 0.1432 0.1439
MAP 0.6412 0.5911 0.6473 0.6521

64 bits

d1 4.7040 3.5828 1.6109 2.5231
d2 15.4719 14.1112 11.6815 17.6179

d1/d2 0.3040 0.2539 0.1379 0.1432
MAP 0.6525 0.6136 0.6767 0.6791

Table 5. Statistic analysis for distances in the feature space of
QuickDraw-3.8M under our model variants. d1 and d2 denote
intra-class distance and inter-class distance, respectively.

tropy loss (Our+CEL), softmax cross entropy plus com-
mon center loss (Our+CEL+CL), softmax cross entropy
plus sketch center loss (Our+CEL+SCL), softmax cross
entropy plus sketch center loss plus quantization loss
(Our+CEL+SCL+QL), which arrives our full model. We
find that with cross entropy loss alone under our two-branch
CNN-RNN model suffices to outperform best competitor,
where by adding sketch center loss and quantization loss
further boost the performance. It’s noteworthy that adding
common center loss harms the performance quite signifi-

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#2763

CVPR
#2763

CVPR 2018 Submission #2763. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Query

Our Full Model DLBHC DSH-Sketch

precision=0.8889 precision=0.7778 precision=0.7500

Figure 6. Qualitative comparison of top 36 retrieval results of our model and state-of-the-art deep hashing methods for query (dog) at 64
bits on QuickDraw-3.8M retrieval gallery. Red sketches indicates false positive sketch. The retrieval precision is obtained by computing
the proportion of true positive sketch. Best viewed in color.

16 bit 24 bit 32 bit 64 bit
Retrieval time per query (s) 0.089 0.126 0.157 0.286

Memory load (MB) 345,000 gallery sketches) 612 667 732 937

Table 6. Retrieval time (s) per query and memory load (MB) on
QuickDraw-3.8M retrieval gallery.

cantly, validating our sketch-specific center loss design. In
Figure 5, we plot the precision-recall curves for all above-
mentioned methods under 16, 24, 32 and 64 bit hashing
codes respectively, which further matched our hypothesis.
Further Analysis on Sketch Center Loss: To statistical-
ly illustrate the effectiveness of our sketch center loss, we
calculate the average ratio of the intra-class distance d1
and inter-class distance d2, termed as d1/d2, among our
345 training categories. A lower value of such score indi-
cates a better feature space learning, since the objects with-
in the same category tend to cluster tighter and push further
away with those of different semantic labels, as forming a
more discriminative feature space. In Table 5, we witness
significant improvement on the category structures brought
by the sketch center loss across all hashing length setting
(Our+CEL vs. Our+CEL+SCL), where on contrary, com-
mon center even undermines the performance (Our+CEL
vs. Our+CEL+CL), which in accordance with what we’ve
observed in Table 2.
Qualitative Evaluation: In Figure 6, we qualitatively com-
pare our full model with DLBHC [14] and DSH-Sketch [16]
on the dog category. It’s interesting to observe (i) how our
model makes less semantic mistakes; (ii) how our mistake
is more reasonably understandable, i.e. sketch is confusing
in itself in most of our falsely-retrieved sketches, while in
other methods some clear semantic errors take place (e.g,
pigs and rabbits).
Running Cost: We report the running cost as retrieval time

(s) per query and memory load (MB) on QuickDraw-3.8M
retrieval gallery (345,000 sketches) in Table 6, which even
on million-scale can still achieve real-time retrieval perfor-
mance.

4.4. Generalization to Sketch Recognition

To validate the generality of our sketch-specific design,
we apply our two-branch CNN-RNN network to sketch
recognition task, by directly adding a 2048d fully connect-
ed layer after joint fusion layer and before the 345-way
classification layer. We compare with two state-of-the-art
classification networks – Sketch-a-net [30] and ResNet-
50 [6], where all above experiments are evaluated on the
QuickDraw-3.8M retrieval gallery set. We demonstrate the
results in Table 4, where following conclusion can drawn:
(i) Exploiting the sketching temporal orders is important,
and by combining the traditional static pixel representation,
more discriminative power is obtained (79.49%vs.68.71%).
(ii) Sketch center loss generalizes to sketch recognition task,
bringing additional benefits.

5. Conclusion

In this paper, we set out to study the novel problem of
sketch hashing retrieval. By leveraging on a large-scale
dataset of 3.8M human sketches, we explore the unique
traits of sketches that were otherwise understudied in prior
art. In particular, we show the benefit of stroke ordering in-
formation by encoding it in a CNN-RNN architecture, and
we introduce a novel hashing loss that accommodates the
abstract nature of sketches. Our hashing model outperforms
all shallow and deep alternatives, and yields state-of-the-art
performance when re-purposed for sketch recognition.
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