38,447 research outputs found

    Numerical Study on Indoor Wideband Channel Characteristics with Different Internal Wall

    Get PDF
    Effects of material and configuration of the internal wall on the performance of wideband channel are investigated by using the Finite Difference Time-Domain (FDTD) method. The indoor wideband channel characteristics, such as the path-loss, Root-Mean-Square (RMS) delay spread and number of the multipath components (MPCs), are presented. The simulated results demonstrate that the path-loss and MPCs are affected by the permittivity, dielectric loss tangent and thickness of the internal wall, while the RMS delay spread is almost not relevant with the dielectric permittivity. Furthermore, the comparison of simulated result with the measured one in a simple scenario has validated the simulation study

    Dust-to-gas ratio, XCOX_{\rm CO} factor and CO-dark gas in the Galactic anticentre: an observational study

    Full text link
    We investigate the correlation between extinction and H~{\sc i} and CO emission at intermediate and high Galactic latitudes (|b|>10\degr) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I (Chen et al. 2014), we present a three-dimensional dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6,000\,deg2^2 at a spatial angular resolution of 6\,arcmin. In the current work, the map is combined with data from gas tracers, including H~{\sc i} data from the Galactic Arecibo L-band Feed Array H~{\sc i} survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR=AV/N(H)DGR=A_V/N({\rm H}) and CO-to-H2\rm H_2 conversion factor XCO=N(H2)/WCOX_{\rm CO}=N({\rm H_2})/W_{\rm CO} for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR=(4.15±0.01)×1022DGR=(4.15\pm0.01) \times 10^{-22}\,magcm2\rm mag\,cm^{2} and XCO=(1.72±0.03)×1020X_{\rm CO}=(1.72 \pm 0.03) \times 10^{20}\,cm2(Kkms1)1\rm cm^{-2}\,(K\,km\,s^{-1})^{-1}. We have also investigated the distribution of "CO-dark" gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the VV-band extinction: N(DG)2.2×1021(AVAVc)cm2N({\rm DG}) \simeq 2.2 \times 10^{21} (A_V - A^{c}_{V})\,\rm cm^{-2}. The mass fraction of DG is found to be fDG0.55f_{\rm DG}\sim 0.55 toward the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2\rm H_2 cloud models by Wolfire et al.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Influence of an external magnetic field on the decoherence of a central spin coupled to an antiferromagnetic environment

    Full text link
    Using the spin wave approximation, we study the decoherence dynamics of a central spin coupled to an antiferromagnetic environment under the application of an external global magnetic field. The external magnetic field affects the decoherence process through its effect on the antiferromagnetic environment. It is shown explicitly that the decoherence factor which displays a Gaussian decay with time depends on the strength of the external magnetic field and the crystal anisotropy field in the antiferromagnetic environment. When the values of the external magnetic field is increased to the critical field point at which the spin-flop transition (a first-order quantum phase transition) happens in the antiferromagnetic environment, the decoherence of the central spin reaches its highest point. This result is consistent with several recent quantum phase transition witness studies. The influences of the environmental temperature on the decoherence behavior of the central spin are also investigated.Comment: 29 preprint pages, 4 figures, to appear in New Journal of Physic
    corecore