45,509 research outputs found

    The Role of Starburst-AGN composites in Luminous Infrared Galaxy Mergers: Insights from the New Optical Classification Scheme

    Full text link
    We investigate the fraction of starbursts, starburst-AGN composites, Seyferts, and LINERs as a function of infrared luminosity (L_IR) and merger progress for ~500 infrared-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare (< 5%) compared with other spectral types. The lack of strong infrared emission in LINERs is consistent with recent optical studies suggesting that LINERs contain AGN with lower accretion rates than in Seyfert galaxies. Most previously classified infrared-luminous LINERs are classified as starburst-AGN composite galaxies in the new scheme. Starburst-AGN composites appear to "bridge" the spectral evolution from starburst to AGN in ULIRGs. The relative strength of the AGN versus starburst activity shows a significant increase at high infrared luminosity. In ULIRGs (L_IR >10^12 L_odot), starburst-AGN composite galaxies dominate at early--intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous infrared objects.Comment: 30 pages, 19 figures, 10 tables, ApJ accepte

    The A2667 Giant Arc at z=1.03: Evidence for Large-scale Shocks at High Redshift

    Full text link
    We present the spatially resolved emission line ratio properties of a ~10^10 M_sun star-forming galaxy at redshift z=1.03. This galaxy is gravitationally lensed as a triple-image giant arc behind the massive lensing cluster Abell 2667. The main image of the galaxy has magnification factors of 14+/-2.1 in flux and ~ 2 by 7 in area, yielding an intrinsic spatial resolution of 115-405 pc after AO correction with OSIRIS at KECK II. The HST morphology shows a clumpy structure and the H\alpha\ kinematics indicates a large velocity dispersion with V_{max} sin(i)/\sigma ~ 0.73, consistent with high redshift disk galaxies of similar masses. From the [NII]/H\alpha\ line ratios, we find that the central 350 parsec of the galaxy is dominated by star formation. The [NII]/H\alpha\ line ratios are higher in the outer-disk than in the central regions. Most noticeably, we find a blue-shifted region of strong [NII]/H\alpha\ emission in the outer disk. Applying our recent HII region and slow-shock models, we propose that this elevated [NII]/H\alpha\ ratio region is contaminated by a significant fraction of shock excitation due to galactic outflows. Our analysis suggests that shocked regions may mimic flat or inverted metallicity gradients at high redshift.Comment: 11 pages, 9 figures, ApJ accepte

    Optical spectroscopy study on single crystalline LaFeAsO

    Full text link
    Millimeter-sized single crystals of LaFeAsO were grown from NaAs flux and the in-plane optical properties were studied over a wide frequency range. A sizable electronic correlation effect was indicated from the analysis of the free-carrier spectral weight. With decreasing temperature from 300 K, we observed a continuous suppression of the spectral weight near 0.6 eV. But a spin-density-wave gap formation at lower energy scale was seen only in the broken-symmetry state. We elaborate that both the itinerancy and local spin interactions of Fe\emph{3d} electrons are present for the FeAs-based systems; however, the establishment of the long-range magnetic order at low temperature has a dominantly itinerant origin.Comment: 4 figures, 5 page

    Coexistence and competition of multiple charge-density-wave orders in rare-earth tri-telluride RTe3

    Full text link
    The occurrences of collective quantum states, such as superconductivity (SC) and charge- or spin-densitywaves (CDWs or SDWs), are among the most fascinating phenomena in solids. To date much effort has been made to explore the interplay between different orders, yet little is known about the relationship of multiple orders of the same type. Here we report optical spectroscopy study on CDWs in the rare-earth tri-telluride compounds RTe3 (R = rare earth elements). Besides the prior reported two CDW orders, the study reveals unexpectedly the presence of a third CDW order in the series which evolves systematically with the size of R element. With increased chemical pressure, the first and third CDW orders are both substantially suppressed and compete with the second one by depleting the low energy spectral weight. A complete phase diagram for the multiple CDW orders in this series is established.Comment: 7 pages, 4 figures, 1 tabl

    AKARI/IRC Broadband Mid-infrared data as an indicator of Star Formation Rate

    Full text link
    AKARI/Infrared Camera (IRC) Point Source Catalog provides a large amount of flux data at {\it S9W} (9 μm9\ {\rm \mu m}) and {\it L18W} (18 μm18\ {\rm \mu m}) bands. With the goal of constructing Star-Formation Rate(SFR) calculations using IRC data, we analyzed an IR selected GALEX-SDSS-2MASS-AKARI(IRC/Far-Infrared Surveyor) sample of 153 nearby galaxies. The far-infrared fluxes were obtained from AKARI diffuse maps to correct the underestimation for extended sources raised by the point-spread function photometry. SFRs of these galaxies were derived by the spectral energy distribution fitting program CIGALE. In spite of complicated features contained in these bands, both the {\it S9W} and {\it L18W} emission correlate with the SFR of galaxies. The SFR calibrations using {\it S9W} and {\it L18W} are presented for the first time. These calibrations agree well with previous works based on Spitzer data within the scatters, and should be applicable to dust-rich galaxies.Comment: PASJ, in pres

    The spectral energy distribution of galaxies at z > 2.5: Implications from the Herschel/SPIRE color-color diagram

    Full text link
    We use the Herschel SPIRE color-color diagram to study the spectral energy distribution (SED) and the redshift estimation of high-z galaxies. We compiled a sample of 57 galaxies with spectroscopically confirmed redshifts and SPIRE detections in all three bands at z=2.56.4z=2.5-6.4, and compared their average SPIRE colors with SED templates from local and high-z libraries. We find that local SEDs are inconsistent with high-z observations. The local calibrations of the parameters need to be adjusted to describe the average colors of high-z galaxies. For high-z libraries, the templates with an evolution from z=0 to 3 can well describe the average colors of the observations at high redshift. Using these templates, we defined color cuts to divide the SPIRE color-color diagram into different regions with different mean redshifts. We tested this method and two other color cut methods using a large sample of 783 Herschel-selected galaxies, and find that although these methods can separate the sample into populations with different mean redshifts, the dispersion of redshifts in each population is considerably large. Additional information is needed for better sampling.Comment: 17 pages, 14 figures, accepted for publication in A&

    The magnetoresistance and Hall effect in CeFeAsO: a high magnetic field study

    Full text link
    The longitudinal electrical resistivity and the transverse Hall resistivity of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is observed in both the magnetoresistance Rxx({\mu}0H) and the Hall resistance Rxy({\mu}0H) while crossing the structural phase transition at Ts \approx 150K. At temperatures above Ts, little magnetoresistance is observed and the Hall resistivity follows linear field dependence. Upon cooling down the system below Ts, large magnetoresistance develops and the Hall resistivity deviates from the linear field dependence. Furthermore, we found that the transition at Ts is extremely robust against the external magnetic field. We argue that the magnetic state in CeFeAsO is unlikely a conventional type of spin-density-wave (SDW).Comment: 4 pages, 3 figures SCES2010, To appear in J. Phys.: Conf. Ser. for SCES201
    corecore