10,051 research outputs found

    Ising-type Magnetic Anisotropy in CePd2_2As2_2

    Full text link
    We investigated the anisotropic magnetic properties of CePd2_2As2_2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2_2Si2_2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large cc-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure ±5/2\langle\pm5/2 \rvert CEF ground-state doublet with the dominantly ±3/2\langle\pm3/2 \rvert and the ±1/2\langle\pm1/2 \rvert doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at TN=14.7T_N=14.7 K with the crystallographic cc-direction being the magnetic easy-axis. The magnetic entropy gain up to TNT_N reaches almost Rln2R\ln2 indicating localised 4f4f-electron magnetism without significant Kondo-type interactions. Below TNT_N, the application of a magnetic field along the cc-axis induces a metamagnetic transition from the AFM to a field-polarised phase at μ0Hc0=0.95\mu_0H_{c0}=0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.Comment: 9 Pages, 8 figure

    Anomalous open orbits in Hofstadter spectrum of Chern insulator

    Full text link
    The nontrivial band topology can influence the Hofstadter spectrum. We investigate the Hofstadter spectrum for various models of Chern insulators under a rational flux ϕ0q\frac{\phi_{0}}{q}, here ϕ0=he\phi_{0}=\frac{h}{e} and qq being an integer. We find two major features. First, the number of splitting subbands is qC|q-C| with Chern number CC. Second, the anomalous open-orbit subbands with Chern numbers q1q-1 and q1-q-1 emerge, which are beyond the parameter window (q/2,q/2)(-q/2,q/2) of the Diophantine equation studied by Thouless-Kohmoto-Nightingale-den Nijs [Phys. Rev. Lett. \textbf{49}, 405 (1982)]. These two findings are explained by semiclassical dynamics. We propose that the number of splitting subbands can be utilized to determine Chern number in cold atom systems, and the open-orbit subbands can provide routes to study exotic features beyond the Landau level physics

    A three dimensional extinction map of the Galactic Anticentre from multi-band photometry

    Full text link
    We present a three dimensional extinction map in rr band. The map has a spatial angular resolution, depending on latitude, between 3 -- 9\,arcmin and covers the entire XSTPS-GAC survey area of over 6,000\,deg2\rm deg^2 for Galactic longitude 140\rm 140 \leq ll 220deg \leq 220\deg and latitude 40\rm -40\leq bb 40deg \leq 40\deg. By cross-matching the photometric catalog of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC) with those of 2MASS and WISE, we have built a multi-band photometric stellar sample of about 30 million stars and applied spectral energy distribution (SED) fitting to the sample. By combining photometric data from the optical to the near-infrared, we are able to break the degeneracy between the intrinsic stellar colours and the amounts of extinction by dust grains for stars with high photometric accuracy, and trace the extinction as a function of distance for low Galactic latitude and thus highly extincted regions. This has allowed us to derive the best-fit extinction and distance information of more than 13 million stars, which are used to construct the three dimensional extinction map. We have also applied a Rayleigh-Jeans colour excess (RJCE) method to the data using the 2MASS and WISE colour (HW2)(H-W2). The resulting RJCE extinction map is consistent with the integrated two dimensional map deduced using the best-fit SED algorithm. However for individual stars, the amounts of extinction yielded by the RJCE method suffer from larger errors than those given by the best-fit SED algorithm.Comment: 20 pages, 18 figures, accepted in MNRA
    corecore