58,072 research outputs found

    Non-Fermi liquid states in the pressurized CeCu2(Si1xGex)2CeCu_2(Si_{1-x}Ge_x)_2 system: two critical points

    Full text link
    In the archetypal strongly correlated electron superconductor CeCu2_2Si2_2 and its Ge-substituted alloys CeCu2_2(Si1x_{1-x}Gex_{x})2_2 two quantum phase transitions -- one magnetic and one of so far unknown origin -- can be crossed as a function of pressure \cite{Yuan 2003a}. We examine the associated anomalous normal state by detailed measurements of the low temperature resistivity (ρ\rho) power law exponent α\alpha. At the lower critical point (at pc1p_{c1}, 1α1.51\leq\alpha\leq 1.5) α\alpha depends strongly on Ge concentration xx and thereby on disorder level, consistent with a Hlubina-Rice-Rosch scenario of critical scattering off antiferromagnetic fluctuations. By contrast, α\alpha is independent of xx at the upper quantum phase transition (at pc2p_{c2}, α1\alpha\simeq 1), suggesting critical scattering from local or Q=0 modes, in agreement with a density/valence fluctuation approach.Comment: 4 pages, including 4 figures. New results added. Significant changes on the text and Fig.

    Performance Analysis of a Dual-Hop Cooperative Relay Network with Co-Channel Interference

    Get PDF
    This paper analyzes the performance of a dual-hop amplify-and-forward (AF) cooperative relay network in the presence of direct link between the source and destination and multiple co-channel interferences (CCIs) at the relay. Specifically, we derive the new analytical expressions for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR) and the average symbol error rate (ASER) of the relay network. Computer simulations are given to confirm the validity of the analytical results and show the effects of direct link and interference on the considered AF relay network

    Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

    Full text link
    In this paper, we study time-optimal control problems related to system of two coupled qubits where the time scales involved in performing unitary transformations on each qubit are significantly different. In particular, we address the case where unitary transformations produced by evolutions of the coupling take much longer time as compared to the time required to produce unitary transformations on the first qubit but much shorter time as compared to the time to produce unitary transformations on the second qubit. We present a canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1), which is natural in understanding the time-optimal control problem of such a coupled qubit system with significantly different time scales. A typical setting involves dynamics of a coupled electron-nuclear spin system in pulsed electron paramagnetic resonance experiments at high fields. Using the proposed canonical decomposition, we give time-optimal control algorithms to synthesize various unitary transformations of interest in coherent spectroscopy and quantum information processing.Comment: 8 pages, 3 figure
    corecore