68,180 research outputs found
A cooperative system which does not satisfy the limit set dichotomy
The fundamental property of strongly monotone systems, and strongly
cooperative systems in particular, is the limit set dichotomy due to Hirsch: if
x(0) < y(0), then either omega(x) < omega(y), or omega(x) = omega(y) and both
sets consist of equilibria. We provide here a counterexample showing that this
property need not hold for (non-strongly) cooperative systems
Model estimation and identification of manual controller objectives in complex tracking tasks
A methodology is presented for estimating the parameters in an optimal control structural model of the manual controller from experimental data on complex, multiinput/multioutput tracking tasks. Special attention is devoted to estimating the appropriate objective function for the task, as this is considered key in understanding the objectives and strategy of the manual controller. The technique is applied to data from single input/single output as well as multi input/multi outpuut experiments, and results discussed
Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity
We propose a simple unconventional geometric scenario to achieve a kind of
nontrivial multi-qubit operations with superconducting charge qubits placed in
a microwave cavity. The proposed quantum operations are insensitive not only to
the thermal state of cavity mode but also to certain random operation errors,
and thus may lead to high-fidelity quantum information processing. Executing
the designated quantum operations, a class of highly entangled cluster states
may be generated efficiently in the present scalable solid-state system,
enabling one to achieve one-way quantum computation.Comment: Accepted version with minor amendments. To appear in Phys. Rev.
Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model
In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58 270 km-2, in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash-Sutcliffe coefficient increases by 14 %, the correlation coefficient increases by 15 %, the process relative error decreases by 8 %, the peak flow relative error decreases by 18 %, the water balance coefficient increases by 8 %, and the peak flow time error displays a 5 h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of page1506 the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins
Forward Modelling of Standing Slow Modes in Flaring Coronal Loops
Standing slow mode waves in hot flaring loops are exclusively observed in
spectrometers and are used to diagnose the magnetic field strength and
temperature of the loop structure. Due to the lack of spatial information, the
longitudinal mode cannot be effectively identified. In this study, we simulate
standing slow mode waves in flaring loops and compare the synthesized line
emission properties with SUMER spectrographic and SDO/AIA imaging observations.
We find that the emission intensity and line width oscillations are a quarter
period out of phase with Doppler shift velocity both in time and spatial
domain, which can be used to identify a standing slow mode wave from
spectroscopic observations. However, the longitudinal overtones could be only
measured with the assistance of imagers. We find emission intensity asymmetry
in the positive and negative modulations, this is because the contribution
function pertaining to the atomic emission process responds differently to
positive and negative temperature variations. One may detect \textbf{half}
periodicity close to the loop apex, where emission intensity modulation is
relatively small. The line-of-sight projection affects the observation of
Doppler shift significantly. A more accurate estimate of the amplitude of
velocity perturbation is obtained by de-projecting the Doppler shift by a
factor of rather than the traditionally used .
\textbf{If a loop is heated to the hotter wing, the intensity modulation could
be overwhelmed by background emission, while the Doppler shift velocity could
still be detected to a certain extent.Comment: 18 pages, 10 figures, Astrophysics Journa
A Solvable Mixed Charge Ensemble on the Line: Global Results
We consider an ensemble of interacting charged particles on the line
consisting of two species of particles with charge ratio 2 : 1 in the presence
of the harmonic oscillator potential. The system is assumed to be at
temperature corresponding to \beta = 1 and the sum of the charges is fixed. We
investigate the distribution of the number as well as the spatial density of
each species of particle in the limit as the total charge increases to \infty.
These results will follow from the fact that the system of particles forms a
Pfaffian point process. We produce the skew-orthogonal polynomials necessary to
simplify the related matrix kernels.Comment: 29 pages, 2 figure
- …