666 research outputs found

    On a two variable class of Bernstein-Szego measures

    Full text link
    The one variable Bernstein-Szego theory for orthogonal polynomials on the real line is extended to a class of two variable measures. The polynomials orthonormal in the total degree ordering and the lexicographical ordering are constructed and their recurrence coefficients discussed.Comment: minor change

    Study of Doubly Heavy Baryon Spectrum via QCD Sum Rules

    Full text link
    In this work, we calculate the mass spectrum of doubly heavy baryons with the diquark model in terms of the QCD sum rules. The interpolating currents are composed of a heavy diquark field and a light quark field. Contributions of the operators up to dimension six are taken into account in the operator product expansion. Within a reasonable error tolerance, our numerical results are compatible with other theoretical predictions. This indicates that the diquark picture reflects the reality and is applicable to the study of doubly heavy baryons.Comment: 23 pages, 9 figures, minor corrections in expression

    J/ψ+c+cˉJ/\psi + c + \bar{c} Photoproduction in e+ee^+ e^- Scattering

    Full text link
    We investigate the J/ψJ/\psi + c + cˉ\bar{c} photoproduction in e+ee^+ e^- collision at the LEP II energy. The physical motivations for this study are: 1) such next-to-leading order(NLO) process was not considered in previous investigations of J/ψJ/\psi photoproduction in e+ee^+ e^- interaction, and it is worthwhile to do so in order to make sound predictions for experimental comparison; 2) from recent Belle experiment results, the process with same final states at the BB factory has a theoretically yet unexplainable large fraction; hence it is interesting to see what may happen at other colliders; 3) the existing LEP data are marginal in observing such process, and at the planed Linear Colliders(LCs) this process can be measured with high accuracy; 4) it is necessary to take this process into consideration in the aim of elucidating the quarkonium production mechanism, especially in testing the universality of NRQCD nonperturbative matrix elements via J/ψJ/\psi photoproduction in electron-position collisions.Comment: 15 pages, 3 figure

    J/\psi production through resolved photon processes at e+ e- colliders

    Full text link
    We consider J/psi photoproduction in e+ e- as well as linear photon colliders. We find that the process is dominated by the resolved photon channel. Both the once-resolved and twice-resolved cross-sections are sensitive to (different combinations of) the colour octet matrix elements. Hence, this may be a good testing ground for colour octet contributions in NRQCD. On the other hand, the once-resolved J/psi production cross-section, particularly in a linear photon collider, is sensitive to the gluon content of the photon. Hence these cross-sections can be used to determine the parton distribution functions, especially the gluon distribution, in a photon, if the colour octet matrix elements are known.Comment: Added a figure on parametrisation dependence of photonic parton densities and some reference

    Inelastic J/ψJ/\psi production in polarized photon-hadron collisions

    Full text link
    Presented here is a calculation of inelastic J/ψJ/\psi production in polarized photon-hadron collisions under the framework of NRQCD factorization formalism. We consider the photoproduction of \jpsi in the energy range relevant to HERA. The Weizs\"acker-Williams approximation is adopted in the evaluation of the cross sections for epep collisions. We found that this process can give another independent test for the color-octet mechanism, and the different features for the two color-octet processes may provide further informations on the mechanism for inelastic \jpsi photoproduction. And the discrepancy on the production asymmetry AA between various sets of polarized gluon distribution functions is also found to be distinctive.Comment: 14pages, 6 PS figure

    On the mechanisms of heavy-quarkonium hadroproduction

    Get PDF
    We discuss the various mechanisms potentially at work in hadroproduction of heavy quarkonia in the light of computations of higher-order QCD corrections both in the Colour-Singlet (CS) and Colour-Octet (CO) channels and the inclusion of the contribution arising from the s-channel cut in the CS channel. We also discuss new observables meant to better discriminate between these different mechanisms.Comment: Invited review talk at 3rd International Conference On Hard And Electromagnetic Probes Of High-Energy Nuclear Collisions (HP2008), 8-14 June 2008, Illa da Toxa, Galicia, Spain. 11 pages, 21 figures, LaTeX, uses svjour.cls and svepj.clo (included

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    Color-singlet and color-octet J/psi production in top quark rare decays

    Full text link
    J/psi production in top quark rare decays is investigated under the framework of NRQCD factorization formalism. Various production channels are studied, and we find that the contributions from the color-singlet quark fragmentation and the color-octet gluon fragmentation are both over 3 orders larger than that from the leading order color-singlet process. The numerical results show that the branching ratio B(t -> c + J/psi + X) is about 10^{-14} in the SM, and 10^{-10} in the MSSM.Comment: 10 pages, RevTex, 4 postscript figures. To appear in Phys. Rev.

    The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array

    Get PDF
    We have already reported the first result on the all-particle spectrum around the knee region based on data from 2000 November to 2001 October observed by the Tibet-III air-shower array. In this paper, we present an updated result using data set collected in the period from 2000 November through 2004 October in a wide range over 3 decades between 101410^{14} eV and 101710^{17} eV, in which the position of the knee is clearly seen at around 4 PeV. The spectral index is -2.68 ±\pm 0.02(stat.) below 1PeV, while it is -3.12 ±\pm 0.01(stat.) above 4 PeV in the case of QGSJET+HD model, and various systematic errors are under study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc

    Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies

    Full text link
    We have observed the shadowing of galactic cosmic ray flux in the direction of the moon, the so-called moon shadow, using the Tibet-III air shower array operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic rays are positively charged; for that reason, they are bent by the geomagnetic field, thereby shifting the moon shadow westward. The cosmic rays will also produce an additional shadow in the eastward direction of the moon if cosmic rays contain negatively charged particles, such as antiprotons, with some fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3 TeV from the dataset observed by the Tibet-III air shower array and detected the moon shadow at 40σ\sim 40 \sigma level. The center of the moon was detected in the direction away from the apparent center of the moon by 0.23^\circ to the west. Based on these data and a full Monte Carlo simulation, we searched for the existence of the shadow produced by antiprotons at the multi-TeV energy region. No evidence of the existence of antiprotons was found in this energy region. We obtained the 90% confidence level upper limit of the flux ratio of antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
    corecore