406 research outputs found

    Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates

    Full text link
    Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profiles of the single vortex state and show how the critical rotational frequency change with the s-wave contact interaction strengths, DDI strengths and the polarization angles. In addition, we find numerically that at the `magic angle' ϑ=arccos(3/3)\vartheta=\arccos(\sqrt{3}/3), the critical rotational frequency is almost independent of the DDI strength. By numerically solving the dipolar GPE at high rotational speed, we identify different patterns of vortex lattices which strongly depend on the polarization direction. As a result, we undergo a study of vortex lattice structures for the whole regime of polarization direction and find evidence that the vortex lattice orientation tends to be aligned with the direction of the dipoles

    The pc-scale radio structure of MIR-observed radio galaxies

    Full text link
    We investigated the relationship between the accretion process and jet properties by ultilizing the VLBA and mid-infrared (MIR) data for a sample of 45 3CRR radio galaxies selected with a flux density at 178 MHz >16.4>16.4 Jy, 5 GHz VLA core flux density \geq 7 mJy, and MIR observations. The pc-scale radio structure at 5 GHz are presented by using our VLBA observations for 21 sources in February, 2016, the analysis on the archival data for 16 objects, and directly taking the measurements for 8 radio galaxies available in literatures. The accretion mode is constrained from the Eddington ratio with a dividing value of 0.01, which is estimated from the MIR-based bolometric luminosity and the black hole masses. While most FRII radio galaxies have higher Eddington ratio than FRIs, we found that there is indeed no single correspondence between the FR morphology and accretion mode with eight FRIIs at low accretion and two FRIs at high accretion rate. There is a significant correlation between the VLBA core luminosity at 5 GHz and the Eddington ratio. Various morphologies are found in our sample, including core only, single-sided core-jet, and two-sided core-jet structures. We found that the higher accretion rate may be more likely related with the core-jet structure, thus more extended jet. These results imply that the higher accretion rates are likely able to produce more powerful jets. There is a strong correlation between the MIR luminosity at 15 μ\mum and VLBA 5 GHz core luminosity, in favour of the tight relation between the accretion disk and jets. In our sample, the core brightness temperature ranges from 10910^{9} to 1013.3810^{13.38} K with a median value of 1011.0910^{11.09} K indicating that systematically the beaming effect may not be significant....Comment: 21 pages, 8 figures, accepted by RA

    Convergence analysis of a spectral-Galerkin-type search extension method for finding multiple solutions to semilinear problems

    Full text link
    In this paper, we develop an efficient spectral-Galerkin-type search extension method (SGSEM) for finding multiple solutions to semilinear elliptic boundary value problems. This method constructs effective initial data for multiple solutions based on the linear combinations of some eigenfunctions of the corresponding linear eigenvalue problem, and thus takes full advantage of the traditional search extension method in constructing initials for multiple solutions. Meanwhile, it possesses a low computational cost and high accuracy due to the employment of an interpolated coefficient Legendre-Galerkin spectral discretization. By applying the Schauder's fixed point theorem and other technical strategies, the existence and spectral convergence of the numerical solution corresponding to a specified true solution are rigorously proved. In addition, the uniqueness of the numerical solution in a sufficiently small neighborhood of each specified true solution is strictly verified. Numerical results demonstrate the feasibility and efficiency of our algorithm and present different types of multiple solutions.Comment: 23 pages, 7 figures; Chinese version of this paper is published in SCIENTIA SINICA Mathematica, Vol. 51 (2021), pp. 1407-143

    Degradation of Cry1Ac Protein Within Transgenic Bacillus thuringiensis Rice Tissues Under Field and Laboratory Conditions

    Get PDF
    To clarify the environmental fate of the Cry1Ac protein from Bacillus thuringiensis subsp. kurstaki (Bt) contained in transgenic rice plant stubble after harvest, degradation was monitored under field conditions using an enzyme-linked immunosorbent assay. In stalks, Cry1Ac protein concentration decreased rapidly to 50% of the initial amount during the first month after harvest; subsequently, the degradation decreased gradually reaching 21.3% when the experiment was terminated after 7 mo. A similar degradation pattern of the Cry1Ac protein was observed in rice roots. However, when the temperature increased in April of the following spring, protein degradation resumed, and no protein could be detected by the end of the experiment. In addition, a laboratory experiment was conducted to study the persistence of Cry1Ac protein released from rice tissue in water and paddy soil. The protein released from leaves degraded rapidly in paddy soil under flooded conditions during the first 20 d and plateaued until the termination of this trial at 135 d, when 15.3% of the initial amount was still detectable. In water, the Cry1Ac protein degraded more slowly than in soil but never entered a relatively stable phase as in soil. The degradation rate of Cry1Ac protein was significantly faster in nonsterile water than in sterile water. These results indicate that the soil environment can increase the degradation of Bt protein contained in plant residues. Therefore, plowing a field immediately after harvest could be an effective method for decreasing the persistence of Bt protein in transgenic rice field

    The Radio Properties of Radio-Loud Narrow-Line Seyfert 1 Galaxies on Parsec Scales

    Full text link
    We present the detection of compact radio structures of fourteen radio-loud narrow line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array observations at 5 GHz, which were performed in 2013. While 50\% of the sources of our sample show a compact core only, the remaining 50\% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 108.410^{8.4} to 1011.410^{11.4} K with a median value of 1010.110^{10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, then implying a lower jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all these sources are very radio-loud with R>100R > 100, their jet properties are diverse, in terms of their milli-arcsecond (mas) scale (pc scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario, where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford-Znajek mechanism.Comment: 39 pages, 17 figures, ApJS accepte

    High Temperature Rheological Performance of Graphene Modified Rubber Asphalt

    Get PDF
    To elucidate the high temperature rheological capability of graphene modified rubber asphalt, three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing machine ,then used dynamic shear rheological test (DSR) and multiple stress creep recovery (MSCR) tests to evaluate. The hardness and softening point with rotational viscosity of samples raised with the addition of graphene, especially the addition of 0.04%. Dynamic shear rheological test revealed that the dynamic shear modulus G*, rutting factor G*/Sin δ, and zero shear viscosity (ZSV) of graphene-modified rubber asphalt were greatly influenced along with graphene-increased, on the contrary, phase angle δ which characterize the viscoelastic ratio of asphalt decreased. Multiple stress creep recovery (MSCR) tests showed that the graphene-enhanced rubber asphalt had high-temperature stability through non-recoverable creep compliance (Jnr). Based on these findings, graphene-modified rubber asphalt binders with the addition of 0.04% graphene had good viscoelastic properties as well as high temperature rutting resistance performance. In the meantime, G*/Sin δ, ZSV, and Jnr100, Jnr3200 have good correlation, which can reveal the excellent high-temperature stability performance of asphalt

    Adaptive Robust Guidance Scheme Based on the Sliding Mode Control in an Aircraft Pursuit-Evasion Problem

    Get PDF
    In this chapter, a robust guidance scheme utilizing a line-of-sight (LOS) observation is presented. Initial relative speed and distance, and error boundaries of them are estimated in accordance with the interceptor-target relative motion kinematics. A robust guidance scheme based on the sliding mode control (SMC) is developed, which requires the boundaries of the target maneuver, and inevitably has jitter phenomenon. For solving above-mentioned problems, an estimation to the target acceleration’s boundary is developed for enhancing robustness of the guidance scheme and the Lyapunov stabilization is analyzed. The proposed robust guidance scheme’s brief characteristic is to reduce the effect of relative speed and distance, to reduce the effect of target maneuverability on the guidance precision, and to strengthen the influence of line-of-sight angular velocity. The proposed scheme’s performances are validated by the simulations of different target maneuvers under two worst-case conditions

    Pole-skipping points in 2D gravity and SYK model

    Full text link
    We represent the first investigation of pole-skipping on both the gravity and field theory sides. In contrast to the higher dimensional models, there is no momentum degree of freedom in (1+1)(1+1)-dimensional bulk theory. Thus, we then consider a scalar field mass as our degree of freedom for the pole-skipping phenomenon instead of momentum. The pole-skipping frequencies of the scalar field in 2D gravity are the same as higher dimensional cases: ω=i2πTn\omega=-i2\pi Tn for positive integer nn. At each of these frequencies, there is a corresponding pole-skipping mass, so the pole-skipping points exist in the (ω,m)(\omega,m) space. We also compute the pole-skipping points of the SYK model in (ω,h)(\omega, h) space where hh is the dimension of the bilinear primary operator. We find that there is a one-to-one correspondence of the pole-skipping points between the JT gravity and the SYK model. To obtain the pole-skipping points, we need to consider the parameter ϵ\epsilon related to chemical potential on the horizon of charged JT gravity and the particle-hole asymmetric parameter E\mathcal{E} of the complex SYK model as shift parameters. This highlights the ϵE\epsilon-\mathcal{E} correspondence in relation to pole-skipping

    The compact radio structure of radio-loud narrow line Seyfert 1 galaxies

    Full text link
    We present the compact radio structure of three radio-loud narrow line Seyfert 1 galaxies from VLBA archive data at 2.3, 5 and 8.4 GHz. In RXS J16290+4007, the radio structure is mostly unresolved. The combination of compact radio structure, high brightness temperature and inverted spectrum between simultaneous 2.3 and 8.4 GHz, strongly favors jet relativistic beaming. Combining with the VLBI data at 1.6 and 8.4 GHz from literatures, we argued that RXS J16333+4718 may also harbor a relativistic jet, with resolved core-jet structure in 5 GHz. B3 1702+457 is clearly resolved with well defined jet component. The overall radio steep spectrum indicates that B3 1702+457 is likely a source optically defined as NLS1 with radio definition of compact steep spectrum sources. From these three sources, we found that radio loud NLS1s can be either intrinsically radio loud (e.g. B3 1702+457), or apparently radio loud due to jet beaming effect (e.g. RXS J16290+4007 and RXS J16333+4718).Comment: 20 pages, 3 figures, accepted for publication in The Astronomical Journa
    corecore