12,048 research outputs found

    Steady Bell state generation via magnon-photon coupling

    Full text link
    We show that parity-time (PT\mathcal{PT}) symmetry can be spontaneously broken in the recently reported energy level attraction of magnons and cavity photons. In the PT\mathcal{PT}-broken phase, magnon and photon form a high-fidelity Bell state with maximum entanglement. This entanglement is steady and robust against the perturbation of environment, in contrast to the general wisdom that expects instability of the hybridized state when the symmetry is broken. This anomaly is further understood by the compete of non-Hermitian evolution and particle number conservation of the hybridized system. As a comparison, neither PT\mathcal{PT}-symmetry broken nor steady magnon-photon entanglement is observed inside the normal level repulsion case. Our results may open a novel window to utilize magnon-photon entanglement as a resource for quantum technologies.Comment: 5 pages, 4 figure

    Primary purification of two antifungal proteins from leaves of the fig (Ficus carica L.)

    Get PDF
    Low-molecular-weight extracts of fig (Ficus carica L.) leaves has antifungal and antibacterial activities against several types of microorganisms. In this work, two high-molecular-weight fractions with antifungal activity, termed figinI and figinII were obtained from leaves of fig using a procedure including ion-exchange chromatography (SP-Sepharose Fast Flow), hydrophobic-interaction chromatography (Phenyl Sepharose 6 Fast Flow and RESOURCE ISO) and ion-exchange chromatography (Mono S). By matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS), the molecular mass of figinI was 21531Da and figinII was 31957Da. This is the first report on isolation of antifungal proteins from F. carica L., and it shows their potential for further investigation.Key word: Fig, antifungal protein, chromatography, natural food  preservative

    Liver-specific knockout of arginase-1 leads to a profound phenotype similar to inducible whole body arginase-1 deficiency

    Get PDF
    Arginase-1 (Arg1) converts arginine to urea and ornithine in the distal step of the urea cycle in liver. We previously generated a tamoxifen-inducible Arg1 deficient mouse model (Arg1-Cre) that disrupts Arg1 expression throughout the whole body and leads to lethality ≈ 2 weeks after gene disruption. Here, we evaluate if liver-selective Arg1 loss is sufficient to recapitulate the phenotype observed in global Arg1 knockout mice, as well as to gauge the effectiveness of gene delivery or hepatocyte transplantation to rescue the phenotype. Liver-selective Arg1 deletion was induced by using an adeno-associated viral (AAV)-thyroxine binding globulin (TBG) promoter-Cre recombinase vector administered to Arg1 "floxed" mice; Arg1(fl/fl) ). An AAV vector expressing an Arg1-enhanced green fluorescent protein (Arg1-eGFP) transgene was used for gene delivery, while intrasplenic injection of wild-type (WT) C57BL/6 hepatocytes after partial hepatectomy was used for cell delivery to "rescue" tamoxifen-treated Arg1-Cre mice. The results indicate that liver-selective loss of Arg1 (> 90% deficient) leads to a phenotype resembling the whole body knockout of Arg1 with lethality ≈ 3 weeks after Cre-induced gene disruption. Delivery of Arg1-eGFP AAV rescues more than half of Arg1 global knockout male mice (survival > 4 months) but a significant proportion still succumb to the enzyme deficiency even though liver expression and enzyme activity of the fusion protein reach levels observed in WT animals. Significant Arg1 enzyme activity from engrafted WT hepatocytes into knockout livers can be achieved but not sufficient for rescuing the lethal phenotype. This raises a conundrum relating to liver-specific expression of Arg1. On the one hand, loss of expression in this organ appears to be both necessary and sufficient to explain the lethal phenotype of the genetic disorder in mice. On the other hand, gene and cell-directed therapies suggest that rescue of extra-hepatic Arg1 expression may also be necessary for disease correction. Further studies are needed in order to illuminate the detailed mechanisms for pathogenesis of Arg1-deficiency

    Effects of relative orientation of the molecules on electron transport in molecular devices

    Full text link
    Effects of relative orientation of the molecules on electron transport in molecular devices are studied by non-equilibrium Green's function method based on density functional theory. In particular, two molecular devices, with the planer Au7_{7} and Ag3_{3} clusters sandwiched between the Al(100) electrodes are studied. In each device, two typical configurations with the clusters parallel and vertical to the electrodes are considered. It is found that the relative orientation affects the transport properties of these two devices completely differently. In the Al(100)-Au7_7-Al(100) device, the conductance and the current of the parallel configuration are much larger than those in the vertical configuration, while in the Al(100)-Ag3_{3}-Al(100) device, an opposite conclusion is obtained

    Twisted Magnon Frequency Comb and Penrose Superradiance

    Full text link
    Quantization effects of the nonlinear magnon-vortex interaction in ferromagnetic nanodisks are studied. We show that the circular geometry twists the spin-wave fields with spiral phase dislocations carrying quantized orbital angular momentum (OAM). Meanwhile, the confluence and splitting scattering of twisted magnons off the gyrating vortex core (VC) generates a frequency comb consisting of discrete and equally spaced spectral lines, dubbed as twisted magnon frequency comb (tMFC). It is found that the mode spacing of the tMFC is equal to the gyration frequency of the VC and the OAM quantum numbers between adjacent spectral lines differ by one. By applying a magnetic field perpendicular to the plane of a thick nanodisk, we observe a magnonic Penrose superradiance inside the cone vortex state, which mimics the amplification of waves scattered from a rotating black hole. It is demonstrated that the higher-order modes of tMFC are significantly amplified while the lower-order ones are trapped within the VC gyrating orbit which manifests as the ergoregion. These results suggest a promising way to generate twisted magnons with large OAM and to drastically improve the flatness of the magnon comb.Comment: 6 pages, 4 figure

    Reconsideration of Second Harmonic Generation from neat Air/Water Interface: Broken of Kleinman Symmetry from Dipolar Contribution

    Full text link
    It has been generally accepted that there are significant quadrupolar and bulk contributions to the second harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena. Namely, the broken of the macroscopic Kleinman symmetry, and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of broken of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well

    Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression with a Pre-Classification Approach

    Get PDF
    Global Navigation Satellite System-Reflectometry (GNSS-R) can retrieve Earth's surface parameters, such as soil moisture (SM) using the reflected signals from GNSS constellations with advantages of non-contact, all-weather, real-time, and continuity, particularly the space-borne Cyclone GNSS (CYGNSS) mission. However, the accuracy and efficiency of SM estimation from CYGNSS still need to improve. In this paper, the global SM is estimated using Machine Learning (ML) regression aided by a pre-classification strategy. The total observations are classified by land types and corresponding subsets are built for constructing ML regression submodels. Ten-fold cross-validation technique is adopted. The overall performance of SM estimation with/without pre-classification are compared, and the results show that the SM estimations using different ML algorithms all have substantial improvement with the pre-classification strategy. Then the optimal XGBoost predicted model with root mean square error (RMSE) of 0.052 cm3/cm3 is adopted. In addition, the satisfactory daily and seasonal SM prediction outcomes with an overall correlation coefficient value of 0.86, and an RMSE value of 0.056 cm3/cm3 are achieved at a global scale, respectively. Furthermore, the extensive temporal and spatial variations of CYGNSS SM predictions are evaluated. It shows that the reflectivity plays a main role among the predictors in SM estimation, and the next is vegetation. In some extremely dry places, the roughness may become more important. The value of SM is positively correlated with RMSE and also another limit condition that will constrain the variation of predictors, thus affecting correlation coefficient R and RMSE. Also, we compare both SMAP and CYGNSS SM predictions against in situ SM measurements from 301 stations. Similar low median unbiased RMSEs are obtained, and the daily averaged CYGNSS-based SM against the in situ networks is 0.049 cm3/cm3. The presented approach succeeds in providing SM estimation at a global scale with employing the least ancillary data with superior results and this paper reveals the spatio-temporal heterogeneity for SM estimation using CYGNSS data
    • …
    corecore