83 research outputs found

    Distinguishing Neural Speech Synthesis Models Through Fingerprints in Speech Waveforms

    Full text link
    Recent strides in neural speech synthesis technologies, while enjoying widespread applications, have nonetheless introduced a series of challenges, spurring interest in the defence against the threat of misuse and abuse. Notably, source attribution of synthesized speech has value in forensics and intellectual property protection, but prior work in this area has certain limitations in scope. To address the gaps, we present our findings concerning the identification of the sources of synthesized speech in this paper. We investigate the existence of speech synthesis model fingerprints in the generated speech waveforms, with a focus on the acoustic model and the vocoder, and study the influence of each component on the fingerprint in the overall speech waveforms. Our research, conducted using the multi-speaker LibriTTS dataset, demonstrates two key insights: (1) vocoders and acoustic models impart distinct, model-specific fingerprints on the waveforms they generate, and (2) vocoder fingerprints are the more dominant of the two, and may mask the fingerprints from the acoustic model. These findings strongly suggest the existence of model-specific fingerprints for both the acoustic model and the vocoder, highlighting their potential utility in source identification applications.Comment: Submitted to ICASSP 202

    Effects of additional food availability and pulse control on the dynamics of a Holling-(p+1) type pest-natural enemy model

    Get PDF
    In this paper, a novel pest-natural enemy model with additional food source and Holling-(p p +1) type functional response is put forward for plant pest management by considering multiple food sources for predators. The dynamical properties of the model are investigated, including existence and local asymptotic stability of equilibria, as well as the existence of limit cycles. The inhibition of natural enemy on pest dispersal and the impact of additional food sources on system dynamics are elucidated. In view of the fact that the inhibitory effect of the natural enemy on pest dispersal is slow and in general deviated from the expected target, an integrated pest management model is established by regularly releasing natural enemies and spraying insecticide to improve the control effect. The influence of the control period on the global stability and system persistence of the pest extinction periodic solution is discussed. It is shown that there exists a time threshold, and as long as the control period does not exceed that threshold, pests can be completely eliminated. When the control period exceeds that threshold, the system can bifurcate the supercritical coexistence periodic solution from the pest extinction one. To illustrate the main results and verify the effectiveness of the control method, numerical simulations are implemented in MATLAB programs. This study not only enriched the related content of population dynamics, but also provided certain reference for the management of plant pest

    Unlocking the Power of Open Set : A New Perspective for Open-Set Noisy Label Learning

    Full text link
    Learning from noisy data has attracted much attention, where most methods focus on closed-set label noise. However, a more common scenario in the real world is the presence of both open-set and closed-set noise. Existing methods typically identify and handle these two types of label noise separately by designing a specific strategy for each type. However, in many real-world scenarios, it would be challenging to identify open-set examples, especially when the dataset has been severely corrupted. Unlike the previous works, we explore how models behave when faced with open-set examples, and find that \emph{a part of open-set examples gradually get integrated into certain known classes}, which is beneficial for the separation among known classes. Motivated by the phenomenon, we propose a novel two-step contrastive learning method CECL (Class Expansion Contrastive Learning) which aims to deal with both types of label noise by exploiting the useful information of open-set examples. Specifically, we incorporate some open-set examples into closed-set classes to enhance performance while treating others as delimiters to improve representative ability. Extensive experiments on synthetic and real-world datasets with diverse label noise demonstrate the effectiveness of CECL

    Evaluation of Bletilla striata Polysaccharide Deproteinized System Based on Entropy Weighted TOPSIS Model

    Get PDF
    The entropy TOPSIS model was used to compare the effects of Sevage method, acetonitrile method and trichloroacetic acid (TCA) method for removaling crude Bletilla striata polysaccharide (BSP) protein, and to explore the rationality of entropy TOPSIS for BSP deproteinization system evaluation. Based on the comprehensive score of BSP retention rate and protein removal rate, the optimal treatment conditions were screened out. Nine evaluation indicators including monosaccharide components, oxidative radical scavenging ability (ORAC), and half scavenging concentration of DPPH radicals (IC50) were constructed. Supplemented by UV and FTIR, the entropy TOPSIS was used to evaluate the results of three BSP deproteinization programs. After comprehensive score, the best extraction times of sevage method was 1 time. At same time, the protein removal rate was 22.9%, and the polysaccharide retention rate was 99.11%. The optimal mass concentration of the TCA method was 10%, when the protein removal rate was 70.64%, and the polysaccharide retention rate was 70.03%. Compared with the ORAC values and IC50 of the three polysaccharide, it was found that the value of polysaccharide ORAC treated by the acetonitrile method was higher than that of the positive control group (P<0.05), and the polysaccharides treated by the Sevage method had the strongest antioxidant activity. The BSP deproteinization evaluation system was analyzed by the entropy TOPSIS model, and the sevage method deproteinization effect was the best and the expected result. The results showed that the entropy TOPSIS model could be used in the evaluation of BSP deproteinization system

    ADD 2023: the Second Audio Deepfake Detection Challenge

    Full text link
    Audio deepfake detection is an emerging topic in the artificial intelligence community. The second Audio Deepfake Detection Challenge (ADD 2023) aims to spur researchers around the world to build new innovative technologies that can further accelerate and foster research on detecting and analyzing deepfake speech utterances. Different from previous challenges (e.g. ADD 2022), ADD 2023 focuses on surpassing the constraints of binary real/fake classification, and actually localizing the manipulated intervals in a partially fake speech as well as pinpointing the source responsible for generating any fake audio. Furthermore, ADD 2023 includes more rounds of evaluation for the fake audio game sub-challenge. The ADD 2023 challenge includes three subchallenges: audio fake game (FG), manipulation region location (RL) and deepfake algorithm recognition (AR). This paper describes the datasets, evaluation metrics, and protocols. Some findings are also reported in audio deepfake detection tasks

    Heat shock protein 90 promotes RNA helicase DDX5 accumulation and exacerbates hepatocellular carcinoma by inhibiting autophagy

    Get PDF
    Objective: Hepatocellular carcinoma (HCC), the main type of liver cancer, has a high morbidity and mortality, and a poor prognosis. RNA helicase DDX5, which acts as a transcriptional co-regulator, is overexpressed in most malignant tumors and promotes cancer cell growth. Heat shock protein 90 (HSP90) is an important molecular chaperone in the conformational maturation and stabilization of numerous proteins involved in cell growth or survival. Methods: DDX5 mRNA and protein expression in surgically resected HCC tissues from 24 Asian patients were detected by quantitative real-time PCR and Western blot, respectively. The interaction of DDX5-HSP90 was determined by molecular docking, immunoprecipitation, and laser scanning confocal microscopy. The autophagy signal was detected by Western blot. The cell functions and signaling pathways of DDX5 were determined in 2 HCC cell lines. Two different murine HCC xenograft models were used to determine the function of DDX5 and the therapeutic effect of an HSP90 inhibitor. Results: HSP90 interacted directly with DDX5 and inhibited DDX5 protein degradation in the AMPK/ULK1-regulated autophagy pathway. The subsequent accumulation of DDX5 protein induced the malignant phenotype of HCC by activating the β-catenin signaling pathway. The silencing of DDX5 or treatment with HSP90 inhibitor both blocked in vivo tumor growth in a murine HCC xenograft model. High levels of HSP90 and DDX5 protein were associated with poor prognoses. Conclusions: HSP90 interacted with DDX5 protein and subsequently protected DDX5 protein from AMPK/ULK1-regulated autophagic degradation. DDX5 and HSP90 are therefore potential therapeutic targets for HCC
    corecore