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Abstract: In this paper, a novel pest-natural enemy model with additional food source and Holling-
(p+1) type functional response is put forward for plant pest management by considering multiple food
sources for predators. The dynamical properties of the model are investigated, including existence
and local asymptotic stability of equilibria, as well as the existence of limit cycles. The inhibition of
natural enemy on pest dispersal and the impact of additional food sources on system dynamics are
elucidated. In view of the fact that the inhibitory effect of the natural enemy on pest dispersal is slow
and in general deviated from the expected target, an integrated pest management model is established
by regularly releasing natural enemies and spraying insecticide to improve the control effect. The
influence of the control period on the global stability and system persistence of the pest extinction
periodic solution is discussed. It is shown that there exists a time threshold, and as long as the control
period does not exceed that threshold, pests can be completely eliminated. When the control period
exceeds that threshold, the system can bifurcate the supercritical coexistence periodic solution from
the pest extinction one. To illustrate the main results and verify the effectiveness of the control method,
numerical simulations are implemented in MATLAB programs. This study not only enriched the
related content of population dynamics, but also provided certain reference for the management of
plant pest.

Keywords: additional food availability; global stability; periodic solution; pulse control;
supercritical branch

1. Introduction

Bemisia tabaci is widely distributed in more than 90 countries and regions. It was recorded in China
as far back as the 1940s and has become a major pest of fruits, vegetables and garden flowers [1–3].
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Biologists have made many attempts to eliminate the effect of Bemisia tabaci on plants, including
the use of pesticides, but the negative effect of pesticide is also evident. As an alternative way, the
idea of biological control was put forward, and the key was to find the right natural enemy species of
Bemisia tabaci. In view of the predatory relationship between Neoseiseius barkeri and Bemisia tabaci,
Neoseiseius barkeri was regarded as one of the best biological control species of Bemisia tabaci due to
its short development period, low death rate and high spawning rate. Moreover, Neoseiulus barkeri is
commonly found in plants such as papaya, rice, mango and artemisia annua, and it has a number of food
sources, feeding on phylloides, tarsus mites and gall mites, thrips, aphids, moths and whiteflies [4–7].
Plant pollen and insect honeydew are also complementary foods of Neoseiulus barkeri when prey is
scarce. Therefore, Neoseiulus barkeri has a high survival rate in the wild and can provide good and
sustainable control of plant pests [8–10].

In natural ecosystems, predator-prey interactions are key determinants of species behavior,
community species composition, and their dynamics. There exists a dynamic balance of predation and
mutual selection between the two species during the long evolutionary process. In addition, the
existence of predation relationships also affects and restricts the development of populations to a
certain extent. Since mathematical models can provide an effective way for in-depth understanding of
the mechanism, existence and stability of population growth, to reveal the effects of predation
relationships between populations and their group effects on ecosystem stability, scholars have
conducted extensive studies on the behavior of predator-prey models with different effects in recent
years [11–15]. It should be pointed out that Lotka [16] and Volterra [17] initiated the earliest research
work and built the classic Lotka-Volterra model from the perspective aspect of molecular chemistry
and ocean ecological system respectively. For different application scenarios and real problems, in
subsequent studies, many scholars extended the Lotka-Volterra model including proposals of logistic
growth function [18], different functional responses [19–21] and so on [22–26]. The generalized
Gause-type predator-prey model takes the following form

dx
dt
= rx

(
1 −

x
K

)
− yφ(x),

dy
dt
= y[cφ(x) − d],

(1.1)

where φ(x) characterizes the functional response of predator on prey. It was shown in experiments and
analysis that Holling type functional response functions are basically applicable to different organisms,
thus attracting the attention and research of many subsequent scholars, such as Holling type II [11, 21,
23, 27] and Holling type III [28–30]. Yang et al. [31] introduced an extension form of the uptake
function called Holling-(p+1) (p ≥ 2), and discussed the dynamics of the proposed model by using p
as an extended parameter. In this paper, Holling-type functional responses between Bemisia tabaci and
Neoseiulus barkeri conforming to the extended form will also be considered.

From the perspective of species protection and pest management point of view, providing additional
food for predators in the predatory system has been regarded in the literature as one of the effective
biological ways [32, 33]. To further investigate the effect of additional food, scholars have carried
out related researches on this topic [34–36]. For species like Neoseiulus barkeri, plant pollen and
insect honeydew are always their complementary foods, so it is vital and practical to study the Bemisia
tabaci and Neoseiulus barkeri system with additional food provision. To suppress the proliferation
and spread of Bemisia tabacti, effective control strategies must be adopted. The concept of integrated
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pest management (IPM) was widely used in the mid to late 20th century [37, 38], and it emphasizes
an integration of different methods (biological, chemical and others) to minimize the use of harmful
pesticides and other undesirable measures to control pests. To describe the instantaneous changes
in biological populations caused by IPM strategies, impulsive differential equations (IDEs) can be
used as a powerful tool to model this phenomenon [39]. Tang and Chen [40] developed the Lotka-
Volterra model by introducing periodic impulsive control. Liu et al. [41] analyzed a Holling type I
pest management model with periodic impulsive control. Zhang et al. [42] and Pei [43] discussed the
mathematical models concerning continuous and impulsive pest control strategies, respectively. Song
and Li [44] discussed a Holling type II Leslie-Gower model with periodic impulsive effect. Wang
et al. [45] proposed a Watt-type prey-predator model with periodic impulsive effect. Qian et al. [46]
analyzed a prey-predator model with competition of predator and periodic impulsive control. Tang et
al. [47,48] and Pei et al. [49] discussed the optimum timing control problem. Besides, scholars had also
introduced IDEs to model different situations, such as pest control [50–53], ecological system [54–56]
and fishery exploitation [57–60]. In this work, we also applied an impulsive control strategy into the
system to suppress the spread of Bemisia tabacti.

The article is organized in the following way. In Section 2, a Bemisia tabaci and Neoseiulus barkeri
model with additional food provision is established, and the dynamical properties such as the existence
and local stability of equilibria as well as the existence of the limit cycle are analyzed. In Section 3,
the Bemisia tabaci and Neoseiulus barkeri model with periodic impulsive control is put forward, and
it is shown that the Bemisia tabaci can be eradicated as long as the period of control is less than a
certain threshold, while for a larger control period, persistence of the system can be achieved. Using
the bifurcation theory, it is shown that a supercritical coexistence periodic solution can be bifurcated
from the pest-extinction one when the control period exceeds a certain time threshold. In Section 4,
numerical simulations are implemented with the purpose of verifying the main results. At the end of
the paper, a brief conclusion with practical significance is presented.

2. Pest management model

Bemisia tabaci is a major pest of fruits, vegetables and garden flowers. Neoseiulus barkeri is
considered an appropriate natural enemy against Bemisia tabaci, which is polyphagous and can
maintain survival on plant pollen in a short time whenever Bemisia tabaci is scarce [8]. Based on this
phenomenon, it is hypothesized that Bemisia tabaci and Neoseiulus barkeri follow the Holling-(p+1)
functional response associated with additional food supply, i.e.,

dx
dt
= rx

(
1 −

x
K

)
−

γxpy
q + xp + aηA

,

dy
dt
=
υγ (xp + ηA) y
q + xp + aηA

− dy,
(2.1)

where

• x represents the density of Bemisia tabaci,
• y represents the density of Neoseiulus barkeri,
• r represents the Bemisia tabaci’s intrinsic growth rate,
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• K represents the Bemisia tabaci’s environmental carrying capacity,
• p denotes the Holling index of the functional response, p ≥ 2,
• γ denotes Neoseiulus barkeri’s average capture rate of Bemisia tabaci,
• a denotes the ratio of Neoseiulus barkeri’s handling time per unit of extra food to that

per unit of prey,
• η denotes ratio of Neoseiulus barkeri’s ability to find additional food to Neoseiulus

barkeri’s ability to find prey,
• A denotes the amount of extra food,
• d denotes the natural mortality rate of Neoseiulus barkeri,
• υ denotes the conversion coefficient.

Since the additional food is only a secondary option, it cannot sustain the long-term survival of
Neoseiulus barkeri, and the following hypotheses are assumed:

A1) Without considering additional food sources, Neoseiulus barkeri will not become
extinct due to the existence of Bemisia tabaci, i.e., υγ − d > 0 holds in (2.1).

A2) In absence of Bemisia tabaci, the additional food resource cannot maintain the survival
of Bemisia tabaci, i.e., ηA ≤ ηA ≜ dq/(υγ − ad) holds.

For Bemisia tabacti, it is impossible to achieve the expected control effect by only relying on
predator predation, so an additional control measure is required. Considering the seasonality and
periodicity of the Bemisia tabaci occurrence, a periodic impulsive control strategy is introduced into
the system, which can be formulated as follows:

dx
dt
= rx

(
1 −

x
K

)
−

γxpy
q + xp + aηA

dy
dt
=
υγ (xp + ηA) y
q + xp + aηA

− dy

 t , jτ,

∆x = −κ1x(t)
∆y = −κ2y(t) + δ

}
t = jτ.

(2.2)

The illustration of (2.2) is as follows: At fixed times t = jτ ( j ∈ N+), integrated management
measures (i.e., release a certain amount of Neoseiulus barkeri (δ) and simultaneously kill a certain
proportion of Bemisia tabaci (κ1), also result in a certain proportion of Neoseiulus barkeri (κ2) killed)
are taken, which causes the densities of Bemisia tabaci x and Neoseiulus barkeri y to be immediately
changed to (1 − κ1)x and (1 − κ2)y + δ.

3. Main work

3.1. Dynamic analysis of (2.1)

Define

f (x, y) ≜ r
(
1 −

x
K

)
−

γxp−1y
q + xp + aηA

, g(x) ≜
υγ (xp + ηA)
q + xp + aηA

− d.

For υγ > d, denote

x∗ = K ≜
(
d(q + aηA) − υγηA

υγ − d

) 1
p

, y∗ ≜
r(K − K)[q + aηA + (K)p]

γK(K)p−1 .
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3.1.1. Equilibria and Local stability

Theorem 1. Model (2.1) always has a saddle point E0(0, 0) and a boundary equilibrium EK(K, 0). EK

is globally asymptotically stable if ηA < ηA ≜ (dq−(υγ−d)K p)/(υγ−ad). The coexistence equilibrium

E∗(x∗, y∗) exists in case of ηA < ηA < ηA and is locally asymptotically stable if one of the constraints

holds: 1) p ≥ p; 2) p < p and K < K, where

p ≜
d(q + ηA) − υγηA
(υγ − d)(q + aηA)

, K ≜
(
1 +

q + aηA + K p

K p − (p − 1)(q + aηA)

)
K. (3.1)

Proof. The Jacobi matrix is

J =

 f (x, y) + x
∂ f
∂x

x
∂ f
∂y

g′(x)y g(x)


=


r −

2rx
K
−

pγxp−1y(q + aηA)
(q + xp + aηA)2 −

γxp

q + xp + aηA
υγpxp−1y(q + (a − 1)ηA)

(q + xp + aηA)2

υγ (xp + ηA)
q + xp + aηA

− d

 .
1) For E0, there is

JE0 =

 r 0

0
υγηA

q + aηA
− d

 .
By Assumption 2, there is υγηA/(q + aηA) − d < 0, then E0 is a saddle and unstable.

2) For EK , there is

JE2 =


−r −

γK p

q + K p + aηA

0
υγ (K p + ηA)
q + K p + aηA

− d

 ,
the eigenvalues are λ1 = −r < 0, λ2 = (υγ (K p + ηA))/(q + K p + aηA) − d. Thus, EK is locally
asymptotically stable if ηA < ηA = (dq − (υγ − d)K p)/(υγ − ad).

3) In case of ηA < ηA < ηA, EK is unstable. Since

f ′x = −
r
K
−
γy

(
(p − 1)xp−2(q + aηA) − x2p−2

)
(q + xp + aηA)2 ,

f ′y = −
γxp−1

q + xp + aηA
, g′(x) =

υγpxp−1(q + (a − 1)ηA)
(q + xp + aηA)2 ,

then for E∗, there is

λ1 + λ2 = x∗ f ′x (x∗, y∗) , λ1λ2 = −x∗y∗ f ′y (x∗, y∗) g′ (x∗) .

Since f ′y (x∗, y∗) < 0 an g′ (x∗) > 0, then λ1λ2 > 0. If one of the conditions holds: 1) p ≥ p; 2) p < p
and K < K holds, then f ′x(x∗, y∗) < 0, that is λ1 + λ2 < 0, thus, E∗ is locally asymptotically stable .
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3.1.2. Limit cycle

When the sign of inequality (3.1) is reversed, the coexistence equilibrium E∗ becomes unstable. In
this case, we have:

Theorem 2. In case of p < p and K > K, there exists at least a limit cycle surrounding E∗.

Proof. If p < p and K > K hold, then E∗ (x∗, y∗) exists but is unstable.
Next, we constructed a closed region G containing E∗, such that all solutions of (2.1) are bounded

in G.

1) Since
dx
dt
|x=K= −

γK py
q + K p + aηA

< 0,

then the trajectory of (2.1) will pass the line x = K from the right to the left.

2) For the line l ≜ υx + y − k = 0, then y = k − υx. Since

dl
dt
= υ

dx
dt
+

dy
dt
= rυx

(
1 −

x
K

)
+

υγηAy
q + xp + aηA

− dy,

then
dl
dt
|l=0= rυx

(
1 −

x
K

)
+
υγηA(k − υx)
q + xp + aηA

− b(k − υx) := h(x).

Obviously, h(x) is a continuous bounded function and has a maximum for 0 ≤ x ≤ K. Denote
hmax = max{h(x) | 0 ≤ x ≤ K}, so it is only to set k > hmax/m, then dl

dt |l=0< 0. So the trajectory
of (2.1) will pass the line l from the top to the bottom. In addition, to ensure E∗ lies in the region,
there must be k > k1 ≜ y∗ + υx∗, so as to k > max {hmax/m, k1}.

The straight lines x = 0 and y = 0 are both trajectories of (2.1), so x = K, y = k− υx, the x-axis and
the y-axis encloses a bounded region G. The well known Poincaré-Bendixson Theorem implies that
there exists at least a limit cycle surrounding E∗ in G.

Remark 1. Theorem 2 gives the existence of limit cycles, but its uniqueness cannot be determined.
Therefore, the stability of the limit cycle can not be determined, which remains an open problem. If the
limit cycle is unique, then it is stable from two sides.

3.2. Complex dynamics of (2.2)

3.2.1. Pest-eradication periodic solution

In absence of Bemisia tabaci, a reduced subsystem is obtained

dx
dt
= 0

dy
dt
=
υγηAy

q + aηA
− dy

 t , jτ,

∆x = 0
∆y = −κ2y(t) + δ

}
t = jτ.

(3.2)
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The solution of (3.2) is

y(t) =
δ exp

{
(υγ−ad)ηA−dq

q+aηA (t − jτ)
}

1 − (1 − κ2) exp
{

(υγ−ad)ηA−dq
q+aηA τ

} , t ∈ ( jτ, ( j + 1)τ]

with
y
(
0+

)
=

δ

1 + (κ2 − 1) exp
{

(υγ−ad)ηA−dq
q+aηA τ

} .
Theorem 3. For (2.2), there exists a pest-eradication periodic solution z̄(t) = (0, y(t)) (( j − 1)τ ≤ t <
jτ). Moreover, for any solution y(t) of (3.2), there is y(t)→ y(t) (t → ∞).

Proof. Clearly,

z̄(t) = (0, y(t)) =

0, δ exp
{

(υγ−ad)ηA−dq
q+aηA (t − jτ)

}
1 − (1 − κ2) exp

{
(υγ−ad)ηA−dq

q+aηA τ
}

with z̄(0+) = (0, y (0+)) is a pest-eradication periodic solution of (2.2).
For 0 < t ≤ τ, there is

y(t) = y0 exp
{

(υγ − ad)ηA − dq
q + aηA

t
}
,

then y (τ+) = (1 − κ2) y(τ) + δ.
For τ < t ≤ 2τ, there is

y(t) = y
(
τ+

)
exp

{
(υγ − ad)ηA − dq

q + aηA
(t − τ)

}
and y (2τ+) = (1 − κ2) y(2τ) + δ.

Similarly, for ( j − 1)τ < t ≤ jτ, there is

y(t) = y
(
( j − 1)τ+

)
exp

{
(υγ − ad)ηA − dq

q + aηA
(t − ( j − 1)τ)

}
and y

(
( j − 1)τ+

)
= (1 − κ2) y( jτ) + δ.

Then we have

y
(
jτ+

)
=

[
(1 − κ2) exp

{
(υγ − ad)ηA − dq

q + aηA
τ

}] j

y0 +
1 −

[
(1 − κ2) exp

{
(υγ−ad)ηA−dq

q+aηA τ
}] j

1 − (1 − κ2) exp
{

(υγ−ad)ηA−dq
q+aηA τ

} δ.
Thus, for jτ < t ≤ ( j + 1)τ, there is

y(t) =y
(
jτ+

)
exp

{
(υγ − ad)ηA − dq

q + aηA
(t − jτ)

}
= (1 − κ2) j

y(0+) −
δ

1 − (1 − κ2) exp
{

(υγ−ad)ηA−dq
q+aηA τ

}
∗ exp

{
(υγ − ad)ηA − dq

q + aηA
t
}
+
δ exp

{
(υγ−ad)ηA−dq

q+aηA (t − jτ)
}

1 − (1 − κ2) exp
{

(υγ−ad)ηA−dq
q+aηA τ

}
→ y(t) as n→ ∞

due to the assumption that qd + adηA − υγηA > 0.
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Theorem 4. For (2.2), z(t) = (0, y(t)) is locally asymptotically stable and globally attractive if τ <
τ0 ≜ − ln(1 − κ1)/r.

Proof. Denote σ1(t) ≜ x(t), σ2(t) ≜ y(t) − y(t). Then, (σ1, σ2) satisfies(
σ1(t)
σ2(t)

)
= Φ(t)

(
σ1(0)
σ2(0)

)
, 0 ≤ t < τ,

where Φ is the fundamental solution matrix, i.e.,

dΦ(t)
dt
=

(
r 0
0 υγηA

q+aηA − d

)
Φ(t)

with Φ(0) = I.
Since (

σ1( jτ+)
σ2( jτ+)

)
=

(
1 − κ1 0

0 1 − κ2

) (
σ1( jτ)
σ2( jτ)

)
,

then

M =
(
1 − κ1 0

0 1 − κ2

)
Φ(τ)

=

(
1 − κ1 0

0 1 − κ2

) erτ 0
0 exp

{
(υγ−ad)ηA−dq

q+aηA τ
}

=

(1 − κ1)erτ 0
0 (1 − κ2) exp

{
(υγ−ad)ηA−dq

q+aηA τ
} .

Undoubtedly,

µ1 = (1 − κ1) erτ, µ2 = (1 − κ2) exp
{

(υγ − ad)ηA − dq
q + aηA

τ

}
.

According to Floquet theory, if τ < τ0 = − ln(1 − κ1)/r, then z(t) = (0, y(t)) is locally asymptotically
stable.

Choose ϵ > 0 such that

(1 − κ1) exp
{∫ τ

0

(
r
(
1 −

x
K

)
−
γxp−1(y(t) − ϵ)
q + xp + aηA

)
dt

}
< (1 − κ1) erτ < 1.

Denote ρ ≜ (1 − κ1) exp
{∫ τ

0

(
r
(
1 − x

K

)
−
γxp−1(y(t)−ϵ)

q+xp+aηA

)
dt

}
. Since ẏ > −dy(t), then for system

dv(t)
dt
= −dv(t) t , jτ

∆z(t) = −κ2v(t) + δ t = jτ
z (0+) = y (0+)

there is y(t) ≥ v(t)→ y(t) as t → ∞. Thus,

y(t) ≥ v(t) > y(t) − ϵ (3.3)
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holds when t is sufficiently large. Here it is assumed that (3.3) always holds. Since
dx
dt
≤ rx

(
1 −

x
K

)
−
γxp(y(t) − ε)
q + xp + aηA

, t , jτ

x ( jτ+) = (1 − κ1) x( jτ), t = jτ

then x(( j + 1)τ) ≤ ρx( jτ), which means that x( jτ) ≤ x (0+) ρ j and x( jτ) → 0 as n → ∞ due to ρ < 1.
Since 0 < x(t) ≤ x( jτ) (1 − κ1) erτ for jτ < t ≤ ( j + 1)τ, then x(t)→ 0 as n→ ∞.

Next, for 0 < ε < [(dq + adηA − υγηA)/(υγ − d)]
1
p , ∃T0 > 0 , 0 < x(t) < ε (t ≥ T0). Here, we

suppose that 0 < x(t) < ε (t ≥ 0). Since

−by(t) ≤
dy(t)

dt
≤

(
υγ (εp + ηA)
q + εp + aηA

− d
)

y(t),

then there is y(t) ← v1(t) ≤ y(t) ≤ v2(t) → v2(t) (t → ∞), where v1(t), v2(t) satisfies the following two
equations, respectively 

dv1(t)
dt
= −dv1(t), t , jτ,

∆v1(t) = −κ2v1(t) + δ, t = jτ,
v1 (0+) = y (0+)

and 
dv2(t)

dt
=

(
υγ (εp + ηA)
q + εp + aηA

− d
)

v2(t), t , jτ,

∆v2(t) = −κ2v1(t) + δ, t = jτ.
v2 (0+) = y (0+)

Since

v2(t) =
δ exp

{(
υγ(εp+ηA)
q+εp+aηA − m

)
(t − jτ)

}
1 − (1 − κ2) exp

{{
υγ(εp+ηA)
q+εp+aηA − m

)
τ
} , jτ < t ≤ ( j + 1)τ,

then ∀ε1 > 0, ∃T1 > 0, y(t) − ε1 < y(t) < v2(t) + ε1 (t > T1), and for ε → 0, there is y(t) − ε1 < y(t) <
y(t) + ε1 for t > T1, which means that y(t)→ y(t) when t → +∞.

3.2.2. Persistence analysis

Theorem 4 indicates that if the control period is less than τ0, then Bemisia tabaci will be completely
eradicated from the system. However, from practical and economic aspects of point of view, it is
impossible to take controls frequently. Therefore, it is necessary to consider that τ > τ0.

Lemma 1. System (2.2) is bounded, i.e., ∃M > 0, there is max{x(t), y(t)} ≤ M holds for sufficiently
large t.

Proof. Denote L(t) = y(t) + υx(t). Then for t , jτ,

D+L(t) = υ
dx
dt
+

dy
dt

= rυx
(
1 −

x
K

)
−

υγxpy
q + xp + aηA

+
υγ (xp + ηA) y
q + xp + aηA

− dy

= rυx −
rυ
K

x2 +
(υγ − ad)ηA − dq − dxp

q + xp + aηA
y.
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Thus

D+L(t) + mL(t) = (r + m)υx −
rυ
K

x2 +
(υγ − ad + am)ηA + (m − d)(xp + q)

q + xp + aηA
y. (3.4)

Define m∗ ≜ min
{
d, ad−υγ

a

}
. Clearly, for m = m∗/2, there is

(υγ − ad + am∗/2)ηA + (m∗/2 − d)xp + (m∗/2 − d)q
q + xp + aηA

< 0,

i.e., (3.4) is bounded. Then

D+L(t) + m∗L(t)/2 ≤ (r + m∗/2)υx −
rυ
K

x2 ≤
υK(r + m∗/2)2

4r
:≜ M0.

For the system {
D+L(t) ≤ −m∗L(t)/2 + M0,

L ( jτ+) ≤ L( jτ) + δ,

there is

L(t) ≤ L(0)e−m∗/2t +

∫ t

0
M0e−m∗(t−s)/2ds +

∑
t> jτ

δe−m∗(t− jτ)/2

< L(0)e−m∗t/2 +
M0

m∗/2

(
1 − e−m∗t/2

)
+ δ

e−m∗(t−τ)/2

1 − em∗/2τ + δ
em∗τ/2

em∗τ/2 − 1

→
2M0

m∗
+ δ

em∗τ/2

em∗τ/2 − 1
as t → ∞.

Therefore, L(t) is bounded, which also means that ∃M = M0
m∗/2 + δ

em∗τ/2

em∗τ/2−1 > 0, max{x(t), y(t)} <
L(t) ≤ M.

For system (2.2), if ∃M1,M2 > 0 and T > 0 such that M1 ≤ x1(t) ≤ M2,M1 ≤ x2(t) ≤ M2 for all
t ≥ T , then it is said to be persistent.

Theorem 5. System (2.2) is persistent in case of τ > τ0 ≜ − ln(1 − κ1)/r.

Proof. By Lemma 1, there is

max{x(t), y(t)} ≤ M ≜
2M0

m∗
+ δ

em∗τ/2

em∗τ/2 − 1
.

By (3.3), there is

y(t) ≥ y(t) − ϵ =
δ exp

{
(υγ−ad)ηA−dq

q+aηA (t − jτ)
}

1 − (1 − κ2) exp
{

(υγ−ad)ηA−dq
q+aηA τ

} − ϵ
≥

δ exp
{

(υγ−ad)ηA−dq
q+aηA τ

}
1 − (1 − κ2) exp

{
(υγ−ad)ηA−dq

q+aηA τ
} − ϵ :≜ ymin.

Next, we show that x(t) ≥ xmin > 0 for sufficiently large t, which is given below in two steps:
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Step 1: Choose xM > 0 and ε > 0, such that

0 < xM <

(
dq + adηA − υγηA

υγ − d

) 1
p

and

ϱ0 ≜ (1 − κ1) exp

rτ −
rxM

K
τ −

γxp−1
M ε

q + aηA + xp
M

τ−

γxp−1
M

q + aηA + xp
M

δ
[
exp

{(
υγ(xp

M+ηA)
q+aηA+xp

M
− d

)
τ
}
− 1

]
(
υγ(xp

M+ηA)
q+aηA+xp

M
− d

) [
1 − (1 − κ2) exp

{(
υγ(xp

M+ηA)
q+aηA+xp

M
− d

)
τ
}]

 > 1.

It can be shown that x(t) < xM cannot be true for all t > 0. Otherwise, due to

dy
dt
=
υγ (xp + ηA) y
q + xp + aηA

− by ≤
υγ

(
xp

M + ηA
)

y

q + xp
M + aηA

− dy,

thus 
dy
dt
≤
υγ

(
xp

M + ηA
)

y

q + xp
M + aηA

− dy, t , jτ,

y (nT+) = (1 − κ2) y( jτ) + δ, t = jτ

implies that y(t) ≤ u(t)→ u(t) as t → ∞ by comparison theorem, where

u(t) =
δ exp

{(
−b + υγ(xp

M+ηA)
q+aηA+xp

M

)
(t − jτ)

}
1 − (1 − κ2) exp

{(
−b + υγ(xp

M+ηA)
q+aηA+xp

M

)
τ
} , t ∈ ( jτ, ( j + 1)τ]

satisfies 
du
dt
=
υγ

(
xp

M + ηA
)

u

q + xp
M + aηA

− du, t , jτ,

u ( jτ+) = (1 − κ2) u( jτ) + δ, t = jτ,
u (0+) = y (0+) > 0.

(3.5)

Therefore, ∃T2 > 0, y(t) ≤ u(t) + ε when t > T2. This also means that

dx
dt
= rx

(
1 −

x
K

)
−

γxpy
q + xp + aηA

≥ x

r − rxM

K
−

γxp−1
M y

q + xp
M + aηA


≥ x

r − rxM

K
−
γxp−1

M (u(t) + ε)
q + xp

M + aηA

 for t > T2.
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Select j1 ∈ N+ with j1τ ≥ T2. Then,

x(( j1 + 1)τ) ≥ x
(

j1τ
+
)

exp


∫ ( j1+1)τ

j1τ

r − rxM

K
−
γxp−1

M (u(t) + ε)
q + xp

M + aηA

 dt

 = ϱ0x( j1τ),

so that x(( j1 + k)τ) ≥ x( j1τ) ϱk
0 → ∞(k → ∞), which contradicts to Lemma 1. Therefore, ∃t1 > 0,

x (t1) ≥ xM.
Step 2: If x(t) ≥ xM (∀t ≥ t1) holds, the proof is completed. Define t+ ≜ inft>t1 {x(t) < xM}, then the

value of t has two possible cases:

1) t = jτ, j ∈ N+. There is x(t) ≥ xM (t ∈
[
t1, t

]
) and x

(
t+
)
= (1 − κ1) x

(
t
)
< xM. Since

ϱ1 = r − rxM
K −

γxM
p−1M

q+xM p+aηA < 0, choose j2, j3 ∈ N+ such that

j2τ

 υγ
(
xp

M + ηA
)

q + aηA + xp
M

− d

 > ln
(
ε

M + δ

)
,

(
1
ϱ0

) j3

< (1 − κ1) j2 exp
((

j2 + 1
)
ϱ1τ

)
. (3.6)

Let T3 ≜ ( j2 + j3)τ, then it can be deduced that ∃t2 ∈
(
t, t + T3

]
satisfies x (t2) > xM. Otherwise,

x(t) ≤ xM (∀t ∈
(
t, t + T3

]
) holds. By (3.5),

u(t) =u
(
t+
)

exp


 υγ

(
xp

M + ηA
)

q + aηA + xp
M

− d

 (t − t
)

=

u (
t+
)
−

δ

1 + (κ2 − 1) exp
{(
−d + υγ(xp

M+ηA)
q+aηA+xp

M

)
τ
}


∗ exp


 υγ

(
xp

M + ηA
)

q + aηA + xp
M

− d

 (t − t
) + u(t).

Then by (3.6),

| u(t) − u(t) |=

∣∣∣∣∣∣∣u
(
t+
)
−

δ

1 + (κ2 − 1) exp
{(
−d + υγ(xp

M+ηA)
q+aηA+xp

M

)
τ
}∣∣∣∣∣∣∣

∗ exp
{(
−d +

υγ (xM
p + ηA)

q + aηA + xM
p

) (
t − t

)}

<(M + δ) exp
{(
−d +

υγ (xM
p + ηA)

q + aηA + xM p

) (
t − t

)}
< ε,

which means that y(t) ≤ u(t) + ε, ∀t ∈
[
t + j2τ, t + T3

]
. In addition, take the same discussion on[

t + j2τ, t + T3

]
, and we get x

(
t + T3

)
≥ x

(
t + j2τ

)
ϱ

j3
0 .
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Since 
dx
dt
≥ x

(
r −

rxM

K
−
γxM

p−1M
q + xM

p + aηA

)
, t , jτ,

x (( jτ)+) = (1 − κ1) x( jτ), t = jτ,
(3.7)

for t ∈
(
t, t + j2τ

]
, then there is x

(
t + τ

)
≥ (1 − κ1) x

(
t
)

exp {ϱ1τ} for t ∈
(
t, t + τ

]
; x

(
t + 2τ

)
≥

(1 − κ1)2 x
(
t
)

exp {2ϱ1τ} for t ∈
(
t + τ, t + 2τ

]
. Similarly, x

(
t + j2τ

)
≥ (1 − κ1) j2 x

(
t
)

exp
{
j2ϱ1τ

}
for t ∈

(
t +

(
j2 − 1

)
τ, t + j2τ

]
. Then for t ∈

(
t, t + j2τ

]
, there is

x
(
t + j2τ

)
≥ x

(
t
)

(1 − κ1) j2 exp
{
j2ϱ1τ

}
≥ xM (1 − κ1) j2 exp

{
j2ϱ1τ

}
.

By (3.6), there is

x
(
t + T3

)
≥ x

(
t + j2τ

)
ϱ

j3
0 ≥ ϱ

j3
0 (1 − κ1) j2 exp

{
j2ϱ1τ

}
xM > xM,

which contradicts to x(t) ≤ xM on
(
t, t + T3

]
. Thus, ∃t2 ∈

(
t, t + T3

]
satisfies x (t2) > xM.

Denote t̃ ≜ inft>t {x(t) > xM}. For t ∈
(
t, t̃

)
, ∃k ≤ j2 + j3 such that t ∈

(
t + (k − 1)τ, t + kτ

]
⊂(

t, t + T3

]
. By (3.7), if t ∈

(
t, t + τ

]
, there is x

(
t + T

)
≥ x

(
t+
)

exp {ϱ1τ}; if t ∈
(
t + τ, t + 2τ

]
,

x
(
t + 2τ

)
≥ x

((
t + τ

)+)
exp {ϱ1τ} = (1 − κ1) x

(
t + τ

)
exp {ϱ1τ}

≥ (1 − κ1)2 x
(
t
)

exp {2ϱ1τ}

Similarly, if t ∈
(
t + (k − 1)τ, t + kτ

]
, there is

x(t) ≥ x
[(

t + (k − 1)τ)+
]

exp
{
ϱ1

[
t −

(
t + (k − 1)τ

)]}
= (1 − κ1) x

(
t + (k − 1)τ

)
exp

{
ϱ1

[
t −

(
t + (k − 1)τ

)]}
≥ (1 − κ1)k x

(
t
)

exp{(k −1)ϱ1T } exp
{
ϱ1

[
t −

(
t + (k − 1)τ

)]}
≥ xM (1 − κ1)k exp {kϱ1τ}

≥ xM (1 − κ1) j2+ j3 exp
{(

j2 + j3

)
ϱ1τ

}
.

Define x′min ≜ xM (1 − κ1) j2+ j3 exp
{(

j2 + j3

)
ϱ1τ

}
. Then there is x(t) ≥ x′min for t ∈

(
t, t̃

)
. For t > T̃ ,

we can find a lower bound x′min of x in a similar procedure.

2) t , jτ, j ∈ N+. Then x
(
t
)
= xM and x(t) > xM for t ∈

[
t1, t

)
. ∃ j3 ∈ N+ such that t ∈(

j3τ,
(

j3 + 1
)
τ
)
. For t ∈

(
t,
(

j3 + 1
)
τ
)
, there are two subcases:

2-i) x(t) ≤ xM. In this case, we can claim that ∃t′2 ∈
[(

j3 + 1
)
τ,

(
j3 + 1

)
τ + T3

]
such that x

(
t′2
)
>

xM. Otherwise, there must be x(t) ≤ xM, ∀t ∈
[(

j3 + 1
)
τ,

(
j3 + 1

)
τ + T3

]
. By (3.5), u(( j3+1)T+) =
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y
((

j3 + 1
)
τ+

)
, thus

u(t) =u
((

j3 + 1
)
τ+

)
exp

{(
υγ (xM

p + ηA)
q + aηA + xM

p − d
) (

t −
(

j3 + 1
)
τ
)}

=
[
u
((

j3 + 1
)
τ+

)
−

δ

1 + (κ2 − 1) exp
{(
υγ(xM p+ηA)
q+aηA+xM p − d

)
τ
}

∗ exp
{

(
υγ (xM

p + ηA)
q + aηA + xM

p − d
)

(t − ( j3 + 1)τ)} + u(t)

for t ∈ ( jτ, ( j + 1)τ], where j3 + 1 < j < j3 + 1 + j2 + j3. Then, we have

| u(t) − ũ(t) |=

∣∣∣∣∣∣u ((
j3 + 1

)
τ+

)
−

δ

1 + (κ2 − 1) exp
{(
υγ(xM p+ηA)
q+aηA+xM p − d

)
τ
} ∣∣∣∣∣∣

∗ exp
{(
−d +

υγ (xM
p + ηA)

q + aηA + xM
p

) (
t −

(
j3 + 1

)
τ
)}

<(M + δ) exp
{(
υγ (xM

p + ηA)
q + aηA + xM

p − d
) (

t −
(

j3 + 1
)
τ
)}
< ε

and y(t) ≤ u(t) + ε for t ∈
[(

j3 + 1
)
τ + j2τ,

(
j3 + 1

)
τ + T3

]
. Similar to the discussion in the first

step, there is x
((

j3 + 1
)
τ + T3

)
≥ x

((
j3 + 1

)
τ + j2τ

)
ϱ

j3
0 . In addition, for t ∈

(
t,
(

j3 + 1
)
τ
)
, there

is x(t) ≤ xM. Integrating (3.7) for t ∈
(
t,
(

j3+ 1) τ + j2τ
]
, if t ∈

((
j3 + 1

)
τ,

(
j3 + 2

)
τ
]
,

x
((

j3 + 2
)
τ
)
≥ (1 − κ1) x

((
j3 + 1

)
τ
)

exp {ϱ1τ} .

If t ∈
((

j3 + 2
)
τ,

(
j3 + 3

)
τ
]
, then

x
((

j3 + 3
)
τ
)
≥ (1 − κ1)2 x

((
j3 + 1

)
τ
)

exp {2ϱ1τ} .

Similarly, if t ∈
((

j3 + 1
)
τ +

(
j2 − 1

)
τ,

(
j3 + 1

)
τ + j2τ

]
, then

x
((

j3 + 1
)
τ + j2τ

)
≥ (1 − κ1) j2 x

((
j3 + 1

)
τ
)

exp
{
j2ϱ1τ

}
.

Since t ∈
(

j3τ,
(

j3 + 1
)
τ
)
, then for t ∈

(
t,
(

j3 + 1
)
τ
]
, there is x

((
j3 + 1

)
τ
)
≥ x

(
t
)

exp {ϱ1τ}, thus

x
((

j3 + 1
)
τ + j2τ

)
≥ (1 − κ1) j2 x

(
t
)

exp
{(

j2 + 1
)
ϱ1τ

}
≥ xM (1 − κ1) j2 exp

{(
j2 + 1

)
ϱ1τ

}
.

By (3.6), there is

x
((

j3 + 1
)
τ + T3

)
≥ x

((
j3 + 1

)
τ + j2τ

)
ϱ

j3
0 > ϱ

j3
0 xM (1 − κ1) j2 exp

{
j2ϱ1τ

}
> xM,

which contradicts to the assumption that x(t) ≤ xM on
(
t,
(

j3 + 1
)
τ + T3

]
. Therefore,

∃t′2 ∈
[(

j3 + 1
)
τ,

(
j3 + 1

)
τ + T3

]
such that x

(
t′2
)
> xM. Define t̄ ≜ inft>t {x(t) > xM}, then
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x(t) ≤ xM for t ∈
(
t, t̄

)
. For t ∈

(
t, t̄

)
, ∃k′ ≤ j2 + j3 such that

t ∈
((

j3 + 1
)
τ + (k′ − 1) τ,

(
j3 + 1

)
τ + k′τ

]
, then by (3.7), there are

x
((

j3 + 1
)
τ
)
≥ x

(
t
)

exp {ϱ1τ} ,

x
((

j3 + 2
)
τ
)
≥ (1 − κ1) x

((
j3 + 1

)
T
)

exp {ϱ1τ} ≥ (1 − κ1) x
(
t
)

exp {2ϱ1τ} ,

x
((

j3 + 1
)
τ +

(
k′ − 1

)
τ
)
≥ (1 − κ1)k′−1 x

(
t
)

exp {k′ϱ1T } .

Thus, for t ∈
((

j3 + 1
)
τ + (k′ − 1) τ,

(
j3 + 1

)
τ + k′τ

]
, there is

x(t) ≥ x
[(

j3 + k′
)
τ+

]
exp

{
ϱ1

[
t −

(
j3 + k′

)
τ
]}

≥ (1 − κ1)k′ x
(
t
)

exp {k′ϱ1τ} exp
{
ϱ1

[
t −

(
j3 + k′

)
τ
]}

≥ xM (1 − κ1) j2+ j3 exp
{(

j2 + j3 + 1
)
ϱ1τ

}
.

Define xmin ≜ xM (1 − κ1) j2+ j3 exp
{
( j2 + j3 + 1)ϱ1τ

}
< x′min. Then, x(t) ≥ xmin for t ∈ (t, t̄), while

for t > t̄, a similar procedure can be adopted.

2-ii) ∃t ∈ (t, ( j3 + 1)τ) such that x(t) > xM. Define t̂ ≜ inft>t {x(t) > xM}, then, x(t) ≤ xM for
t ∈ (t, t̂). Similarly, (3.7) holds. The integration of (3.7) over (t, t̂) gives that
x(t) ≥ x(t) exp

{
ϱ1(t − t)

}
≥ xM exp {ϱ1τ} > xmin, while for t > t̂, a similar procedure can be done.

To sum up, ∃xmin > 0, x(t) ≥ xmin when t is sufficiently large. Therefore, the persistence is proved.

3.2.3. Coexistence periodic solution

Theorem 6. The system (2.2) can bifurcate a supercritical coexistent periodic solution when τ > τ0 ≜
− ln(1 − κ1)/r.

Proof. In order to be consistent with the branching theory in Appendix, let us make the transformation
x1(t) = y(t), x2(t) = x(t), which leads to the following system

dx1

dt
=
υγ (x2

p + ηA) x1

q + x2
p + aηA

− dx1

dx2

dt
= rx2

(
1 −

x2

K

)
−

γx2
px1

q + x2
p + aηA

 t , jτ,

x1(t+) = (1 − κ2)x1(t) + δ
x2(t+) = (1 − κ1)x2(t)

}
t = jτ.

(3.8)

Thus, we have

F1 (x1, x2) =
υγ (x2

p + ηA) x1

q + x2
p + aηA

− dx1,

F2 (x1, x2) = rx2

(
1 −

x2

K

)
−
γx2

p + x1

q + x2
p + aηA

,

θ1 (x1, x2) = (1 − κ2) x1(t) + δ,
θ2 (x1, x2) = (1 − κ1) x2(t),
ξ(t) = (xs(t), 0) = (y(t), 0),
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where F1, F2, θ1, θ2 are sufficiently smooth functions, θ1, θ2 are strictly positive and
F2 (x1, 0) = θ2 (x1, 0) ≡ 0. The corresponding subsystem of (3.8) in the case of x2(t) = 0 is

dx1(t)
dt
= F1 (x1(t), 0) , t , jτ,

x1 ( jτ+) = θ1 (x1( jτ), 0) , t = jτ,

which has a stable τ0 periodic solution denoted as

xs =
δ exp

{
(υγ−ad)ηA−dq

q+aηA (t − jτ)
}

1 − (1 − κ2) exp
{

(υγ−ad)ηA−dq
q+aηA τ

} .
Thus, ξ = (xs, 0) is the boundary period solution of (3.8). Let x0 = xs(0), ξ(0) = (x0, 0). Then, we
obtain 

∂Φ1 (t, x0)
∂x1

= exp
{

(υγ − ab)ηA − bq
q + aηA

t
}
,

∂Φ2 (t, x0)
∂x2

= ert,

∂θ1 (t, x0)
∂x1

= 1 − κ2,
∂θ2 (t, x0)
∂x2

= 1 − κ1,

∂Φ1 (t, x0)
∂x2

= 0,

d0
′ = 1 − (1 − κ1) erτ0 ,

a0
′ = 1 − (1 − κ2) exp

{
(υγ−ab)ηA−bq

q+aηA τ0

}
> 0,

b0
′ = 0,
∂2Φ2 (t, x0)
∂x1∂x2

= 0,

∂2Φ2 (t, x0)
∂x2

2 = −
2r
K

ert,

∂2Φ2 (t, x0)
∂x2∂τ

= rert,

∂2θ2
∂x1∂x2

= 0,
∂2θ2
∂x2

2 = 0,

and thus, we have

B = − (1 − κ1) rerτ0 ,C =
2r
K

(1 − κ1) erτ0 .

Therefore, BC < 0, which means that (2.2) can bifurcate from the boundary periodic solution to a
supercritical coexistent periodic solution.

4. Numerical simulations

To illustrate the main results and verify the effectiveness of the control method, numerical
simulations are implemented in MATLAB programs. The biological parameters in the models are
chosen as follows: r = 0.25, K = 200, γ = 0.5, p = 2, q = 1.2, a = 0.3, η = 0.2, A = 2, d = 0.44998.
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4.1. Verification of (2.1)

By Theorem 1, it can be concluded that the dynamic properties of (2.1) depend on the magnitude
of parameter υ for given ηA, as illustrated in Figure 1.

Figure 1. Tendency of the solutions of (2.1) for different υ.

For υ = 0.8, there is υγ < d, and in this case, EK is globally asymptotically stable, as illustrated in
the left subplot of Figure 1. In such situations, predator species will go extinct, which is not the result
we want. To ensure the survival of predators, the conversion rate of predators has to be increased by
themselves, i.e., υ > d/γ.

For υ = 0.9, there is x∗ < K, then E∗(143.87, 20.19) exists and is locally asymptotically stable
due to K < K = 287.8, as illustrated in the middle subplot of Figure 1. It can be easily checked that
ηA > ηA, i.e., the additional food availability induces the coexistence of the two species.

For υ = 0.90004, there is K > K = 86.8, then E∗(43.4, 17) is unstable and a limit cycle exists, as
illustrated in the right subplot of Figure 1. It can be observed that the limit cycle is unique, so it is
orbitally asymptotically stable.

Figure 2 shows the impact of additional food resource on the pest and natural enemy in the
coexistent steady state. It can be observed that x∗ decreases as ηA increases, and y∗ varies with ηA and
is influenced by υ. For υ = 0.9, y∗ increases as ηA increases; for υ = 0.90004, y∗ increases first, and
then decreases as ηA increases; while for υ = 0.90008, y∗ decreases as ηA increases.
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Figure 2. The dependence of pest and natural enemy on the additional food in the coexistence
steady state for different υ.

4.2. Verification of (2.2)

For (2.2), it is assumed that κ1 = 0.5, κ2 = 0.3 and δ = 1. When τ = 0.5 < τ0 = 0.8926, the
pest-eradication periodic solution is locally asymptotically stable and globally attractive, as presented
in Figure 3. Although the pest is eradicated in this situation, it requires a frequent control, which is
neither necessary nor desirable for practical systems.
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Figure 3. Time series and phase portrait of the solution of (2.2): (x0, y0) = (0.1, 5), τ = 0.5.
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When τ = 5 > τ0, the pest-eradication periodic solution is unstable, then a coexistence periodic
solution exists, as shown in Figure 4.
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Figure 4. Time series and phase portrait of the solution of (2.2): (x0, y0) = (0.1, 5), τ = 5.

Figure 5 presents the coexistence periodic solution for different τ. It can be observed that the density
of pests at control time increases as τ increases. This implies that the control period should be neither
too small nor too large. This needs to be determined according to the actual situation, to ensure that
the amount of pests cannot exceed its allowable threshold.
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Figure 5. The coexistence periodic solution of (2.2) for different τ.
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5. Conclusions

Agricultural pests are an important factor that endanger agricultural production. Common pest
control methods include chemical, biological, and IPM. In order to effectively solve the problem of pest
control, we proposed a novel pest-natural enemy model with additional food sources and a generalized
Holling type functional response of predators based on the consideration of multiple food sources of
natural enemy species. The results showed that the natural enemy has a certain restraining effect on
the hostile pests (Theorem 1, Figure 1) and the additional food availability induces a direct impact on
the positive equilibrium (Theorem 1, Figure 2). For ηA < ηA = (dq − (υγ − d)K p)/(υγ − ad), EK is
globally asymptotically stable. In such situations, predator species go extinct. This is not the result we
want. To ensure the survival of predators, there has to be enough extra food available (i.e., ηA > ηA),
or the conversion rate of predators has to be increased by themselves.

In order to achieve the effect of rapid pest management, we introduced a periodic impulsive control
into the system and established a pest management model. It was shown that the pest-eradication
periodic solution exists and its stability depends on the control period (Figure 3) and when the control
period is less than a given time threshold (i.e., τ < τ0 ≜ − ln(1 − κ1)/r), the pest-eradication periodic
solution is globally asymptotically stable. Although the pest is eradicated, it requires a frequent control,
which is neither necessary nor desirable for practical systems. In fact, it is not necessary to remove
all pests; as long as the amount of pests in the system does not exceed a certain threshold, it will not
cause environmental and ecological harm. Thus, we magnified the period over which the control was
imposed. The result showed that the system was persistent and a coexistence periodic solution exists
as a supercritical branch when the control period exceeds the time threshold.

Simulations indicated that the parameter υ directly impacts the local stability of the coexistence
equilibrium. When υ = 0.9, E∗ is locally asymptotically stable, while when υ = 0.90004, it loses the
stability and a limit cycle occurs. For the control system, a pest-eradication periodic solution exists
when τ < 0.893 (Figure 3), or a coexistence periodic solution exists when τ > 0.893 (Figures 4 and 5).
It can be observed that the density of pest at control time increases as τ increases, so the control period
should be neither too small nor too large. This needs to be determined according to the actual situation,
to ensure that the amount of pests cannot exceed its allowable threshold. This study not only enriched
the related content of population dynamics, but also provided certain reference for the management of
plant pests.
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Appendix

In this section, some notation, definitions, and lemmas to facilitate understanding of the main results
are presented [41, 44]. For an impulse differential equation

ẋ1(t) = F1 (x1(t), x2(t))
ẋ2(t) = F2 (x1(t), x2(t))

}
t , jτ,

x1 ( jτ+) = Θ1 (x1( jτ), x2( jτ))
x2 ( jτ+) = Θ2 (x1( jτ), x2( jτ))

}
t = jτ.

(A1)

Denote R+ = [0,+∞) and R2
+ = {(x1, x2) | x1 ≥ 0, x2 ≥ 0}. Let z = (x1, x2), F = (F1, F2)T . A map π:

R+ × R
2
+ → R+ is said to belong Π0 if it satisfies

1) π is continuous on ( jτ, ( j + 1)τ] × R2
+, lim(t,z′)→(nT+,z) = π(nT+, z) exists;

2) π is locally Lipschitzian for z.

Definition 1. Let π ∈ Π0, (t, z) ∈ ( jτ, ( j+1)τ]×R2
+. The upper right derivatives of π(t, ( jτ, ( j+1)τ]×R2

+)
with respect to model (A1) is defined as

D+π(t, z) = lim
h→0

sup
π(t + h, z + hF(t, z)) − π(t, z)

h
.

Lemma 2 (Comparison Theorem). Suppose that ω ∈ PC1 (R+,R) and
dω(t)

dt ⩽ f (t)ω(t) + g(t), t > 0, t , tk,

ω
(
τ+k

)
⩽ fkω (τk) + gk, t > 0, t = τk,

ω (0+) = ω0. t0 ⩾ 0,
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Then for t > 0, there is

ω(t) ⩽ω(0)
∏

0<τk<t

fk exp
(∫ t

0
f (s)ds

)
+

∫ ∞

0

∏
s<τk<t

fk exp
(∫ t

0
f (τ)dτ

)
g(s)ds

+
∑

0<τk<t

∏
τk⩽τ j<t

f j exp
(∫ t

τk

f (τ)dτ
)

gk

(A2)

Similarly, if the group of non-equations (A2) is reversed, then for t > 0 we have

ω(t) ⩾ω(0)
∏

0<τk<t

fk exp
(∫ t

0
f (s)ds

)
+

∫ ∞

0

∏
s<τk<t

fk exp
(∫ t

0
f (τ)dτ

)
g(s)ds

+
∑

0<τk<t

∏
τk⩽τ j<t

f j exp
(∫ t

τk

f (τ)dτ
)

gk.

Lemma 3. For t > 0, suppose that ω ∈ PC (R+,R+) and

ω(t) ⩽ ω0 +

∫ t

0
f (s)ω(s)ds +

∑
0<τk<t

γkω (τk) ,

where f ∈ PC (R+,R+) , γk ⩾ 0 and ω0 is constant. Then

ω(t) ⩽ ω0

∏
0<τk<t

(1 + γk) exp
(∫ t

0
f (s)ds

)
.

Denote z(0) = z0 = (x10, x20)T , z(t) = (x1(t), x2(t))T = Φ(t, z0) = (Φ1(t, z0),Φ2(t, z0)). Define

d′0 = 1 −
(
∂Θ2

∂x2
∗
∂Φ2

∂x2

)
(τ0, x0) ,

a′0 = 1 −
(
∂Θ1

∂x1
∗
∂Φ1

∂x1

)
(τ0, x0) ,

b′0 = −
(
∂Θ1

∂x1
∗
∂Φ1

∂x2
+
∂Θ1

∂x2

∂Φ2

∂x2

)
(τ0, x0) ,

∂Φ1 (t, x0)
∂x1

= exp
(∫ t

0

∂F1(ξ(r))
∂x1

dr
)
,

∂Φ2 (t, x0)
∂x2

= exp
(∫ t

0

∂F2(ξ(r))
∂x2

dr
)
,

∂Φ1 (t, x0)
∂x2

=

∫ t

0
exp

(∫ t

u

∂F1(ξ(r))
∂x1

dr
)
∂F1(ξ(u))
∂x2

∗ exp
(∫ u

0

∂F2(ξ(r))
∂x2

dr
)

du,

∂2Φ2 (t, x0)
∂x2∂x1

=

∫ t

0
exp

(∫ t

u

∂F2(ξ(r))
∂x2

dr
)
∂2F2(ξ(u))
∂x1∂x2

∗ exp
(∫ u

0

∂F2(ξ(r))
∂x2

dr
)

du,

∂2Φ2 (t, x0)
∂x2∂τ

=
∂F2(ξ(t))
∂x2

exp
(∫ t

0

∂F2(ξ(r))
∂x2

dr
)
,

∂Φ1 (τ0, x0)
∂τ

= x̃′ (τ0) , x̃ is the periodic solution of the system.
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∂2Φ2 (t, x0)
∂x2

2

=

∫ t

0
exp

(∫ t

u

∂F2(ξ(r))
∂x2

dr
)
∂2F2(ξ(u))
∂x2

2

∗ exp
(∫ u

0

∂F2(ξ(r))
∂x2

dr
)

du

+

∫ t

0

{
exp

(∫ t

u

∂F2(ξ(r))
∂x2

dr
)
∂2F2(ξ(u))
∂x2∂x1

}
∗

{∫ u

0
exp

(∫ ν

p

∂F1(ξ(r))
∂x1

dr
)
∂F1(ξ(p))
∂x2

∗ exp
(∫ p

0

∂F2(ξ(r))
∂x2

dr
)

dp
}

du,

B = −
∂2Θ2

∂x1∂x2

(
∂Φ1 (τ0, x0)
∂τ

+
∂Φ1 (τ0, x0)
∂x1

1
a′0

∂Θ1

∂x1

∂Φ1 (τ0, x0)
∂τ

)
∂Φ2 (τ0, x0)
∂x2

−
∂Θ2

∂x2

(
∂2Φ2 (τ0, x0)
∂τ∂x2

+
∂2Φ2 (τ0, x0)
∂x1∂x2

1
a′0

∂Θ1

∂x1

∂Φ1 (τ0, x0)
∂τ

)
,

C = − 2
∂2Θ2

∂x1∂x2

(
−

b′0
a′0

∂Φ1 (τ0, x0)
∂x1

+
∂Φ1 (τ0, x0)
∂x2

)
∂Φ2 (τ0, x0)
∂x2

−
∂2Θ2

∂x2
2

(
∂Φ2 (τ0, x0)
∂x2

)2

+ 2
∂Θ2

∂x2

b′0
a′0

∂2Φ2 (τ0, x0)
∂x2∂x1

−
∂Θ2

∂x2

∂2Φ2 (τ0, x0)
∂x2

2

Thus, we have the following lemma.

Lemma 4. In the case of | 1 − a′0 |< 1, d′0 = 0, there are: a) If BC , 0, then the system (A1) can
branch out from the boundary period solution to a nontrivial periodic solution. Moreover, in the case
of BC < 0, the periodic solution is a supercritical branching one; in the case of BC > 0, the periodic
solution is a subcritical branching one; b) If BC = 0, it cannot be determined.
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