2,895 research outputs found

    Data-driven design of fault diagnosis for three-phase PWM rectifier using random forests technique with transient synthetic features

    Full text link
    A three-phase pulse-width modulation (PWM) rectifier can usually maintain operation when open-circuit faults occur in insulated-gate bipolar transistors (IGBTs), which will lead the system to be unstable and unsafe. Aiming at this problem, based on random forests with transient synthetic features, a data-driven online fault diagnosis method is proposed to locate the open-circuit faults of IGBTs timely and effectively in this study. Firstly, by analysing the open-circuit fault features of IGBTs in the three-phase PWM rectifier, it is found that the occurrence of the fault features is related to the fault location and time, and the fault features do not always appear immediately with the occurrence of the fault. Secondly, different data-driven fault diagnosis methods are compared and evaluated, the performance of random forests algorithm is better than that of support vector machine or artificial neural networks. Meanwhile, the accuracy of fault diagnosis classifier trained by transient synthetic features is higher than that trained by original features. Also, the random forests fault diagnosis classifier trained by multiplicative features is the best with fault diagnosis accuracy can reach 98.32%. Finally, the online fault diagnosis experiments are carried out and the results demonstrate the effectiveness of the proposed method, which can accurately locate the open-circuit faults in IGBTs while ensuring system safety.Comment: IET Power Electronic

    Seroprevalence of Toxoplasma gondii infection in pet dogs in Lanzhou, Northwest China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, surveys of <it>Toxoplasma gondii </it>infection in dogs have been reported worldwide, including China. However, little is known about the prevalence of <it>T. gondii </it>in pet dogs in Northwest China. In the present study, the prevalence of <it>T. gondii </it>in pet dogs in Lanzhou, China was investigated using the modified agglutination test (MAT).</p> <p>Results</p> <p>In this survey, antibodies to <it>T. gondii </it>were found in 28 of 259 (10.81%) pet dogs, with MAT titers of 1:20 in 14 dogs, 1:40 in nine, 1:80 in four, and 1:160 or higher in one dog. The prevalence ranged from 6.67% to 16.67% among dogs of different ages, with low rates in young pet dogs, and high rates in older pet dogs. The seroprevalence in dogs >3 years old was higher than that in dogs ≤1 years old, but the difference was not statistically significant (<it>P ></it>0.05). The seroprevalence in male dogs was 12.50% (17 of 136), and in female dogs it was 8.94% (11 of 123), but the difference was not statistically significant (<it>P ></it>0.05).</p> <p>Conclusions</p> <p>A high prevalence of <it>T. gondii </it>infection was found in pet dogs in Lanzhou, Northwest China, which has implications for public health in this region. In order to reduce the risk of exposure to <it>T. gondii</it>, further measures and essential control strategies should be carried out rationally in this region.</p

    A Random Forest and Current Fault Texture Feature-Based Method for Current Sensor Fault Diagnosis in Three-Phase PWM VSR

    Full text link
    Three-phase PWM voltage-source rectifier (VSR) systems have been widely used in various energy conversion systems, where current sensors are the key component for state monitoring and system control. The current sensor faults may bring hidden danger or damage to the whole system; therefore, this paper proposed a random forest (RF) and current fault texture feature-based method for current sensor fault diagnosis in three-phase PWM VSR systems. First, the three-phase alternating currents (ACs) of the three-phase PWM VSR are collected to extract the current fault texture features, and no additional hardware sensors are needed to avoid causing additional unstable factors. Then, the current fault texture features are adopted to train the random forest current sensor fault detection and diagnosis (CSFDD) classifier, which is a data-driven CSFDD classifier. Finally, the effectiveness of the proposed method is verified by simulation experiments. The result shows that the current sensor faults can be detected and located successfully and that it can effectively provide fault locations for maintenance personnel to keep the stable operation of the whole system.Comment: Frontiers in Energy Researc

    Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2 Nanoparticle Films: Evidence Against Multiple Trapping in Exponential Conduction-Band Tails

    Get PDF
    The temperature and photoexcitation density dependences of the electron transport dynamics in electrolytefilled mesoporous TiO2 nanoparticle films were investigated by transient photocurrent measurements. The thermal activation energy of the diffusion coefficient of photogenerated electrons ranged from 0.19–0.27 eV, depending on the specific sample studied. The diffusion coefficient also depends strongly on the photoexcitation density; however, the activation energy has little, if any, dependence on the photoexcitation density. The light intensity dependence can be used to infer temperature-independent dispersion parameters in the range 0.3–0.5. These results are inconsistent with the widely used transport model that assumes multiple trapping of electrons in an exponential conduction-band tail. We can also exclude a model allowing for widening of a band tail with increased temperature. Our results suggest that structural, not energetic, disorder limits electron transport in mesoporous TiO2. The analogy between this material and others in which charge transport is limited by structural disorder is discussed

    Identification of prognostic cancer-associated fibroblast markers in luminal breast cancer using weighted gene co-expression network analysis

    Get PDF
    BackgroundCancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression and are known to mediate endocrine and chemotherapy resistance through paracrine signaling. Additionally, they directly influence the expression and growth dependence of ER in Luminal breast cancer (LBC). This study aims to investigate stromal CAF-related factors and develop a CAF-related classifier to predict the prognosis and therapeutic outcomes in LBC.MethodsThe Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to obtain mRNA expression and clinical information from 694 and 101 LBC samples, respectively. CAF infiltrations were determined by estimating the proportion of immune and cancer cells (EPIC) method, while stromal scores were calculated using the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Weighted gene co-expression network analysis (WGCNA) was used to identify stromal CAF-related genes. A CAF risk signature was developed through univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. The Spearman test was used to evaluate the correlation between CAF risk score, CAF markers, and CAF infiltrations estimated through EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms. The TIDE algorithm was further utilized to assess the response to immunotherapy. Additionally, Gene set enrichment analysis (GSEA) was applied to elucidate the molecular mechanisms underlying the findings.ResultsWe constructed a 5-gene prognostic model consisting of RIN2, THBS1, IL1R1, RAB31, and COL11A1 for CAF. Using the median CAF risk score as the cutoff, we classified LBC patients into high- and low-CAF-risk groups and found that those in the high-risk group had a significantly worse prognosis. Spearman correlation analyses demonstrated a strong positive correlation between the CAF risk score and stromal and CAF infiltrations, with the five model genes showing positive correlations with CAF markers. In addition, the TIDE analysis revealed that high-CAF-risk patients were less likely to respond to immunotherapy. Gene set enrichment analysis (GSEA) identified significant enrichment of ECM receptor interaction, regulation of actin cytoskeleton, epithelial-mesenchymal transition (EMT), and TGF-β signaling pathway gene sets in the high-CAF-risk group patients.ConclusionThe five-gene prognostic CAF signature presented in this study was not only reliable for predicting prognosis in LBC patients, but it was also effective in estimating clinical immunotherapy response. These findings have significant clinical implications, as the signature may guide tailored anti-CAF therapy in combination with immunotherapy for LBC patients

    Identification of a differentially expressed gene, ACL, between Meishan × Large White and Large White × Meishan F1 hybrids and their parents

    Get PDF
    ATP-citrate lyase (ACL), one of the lipogenic enzymes, catalyses the formation of acetyl-coenzyme A (CoA) involved in the synthesis of fatty acid and cholesterol. In pig, very little is known about the ACL gene. In this work, the mRNA differential display technique was used to analyse the differences in gene expression between Meishan and Large White pigs and the F1 hybrids of both direct and reciprocal crosses. Our results show that among the differentially expressed genes ACL is up-regulated in the backfat of the F1 hybrids. After cloning and analysing the fulllength cDNA and the 870 bp 5'-flanking sequence of the porcine ACL gene, a C/T mutation at position -97 bp upstream of the transcription site was detected. Luciferase activity detection showed that this mutation changed the transcriptional activity. In F1 hybrids, the heterozygous genotype CT was more frequent than the homozygous genotypes CC and TT. Real-time PCR analysis showed that in Meishan pigs, ACL mRNA expression was more abundant in individuals with genotype CT than in those with genotype CC or TT or in Large White pigs. These results indicate that the C/T mutation affects ACL mRNA expression, probably via the activator protein 2

    RNA Interference inhibits Hepatitis B Virus of different genotypes in Vitro and in Vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis B virus (HBV) infection increases the risk of liver disease and hepatocellular carcinoma. Small interfering RNA (siRNA) can be a potential new tool for HBV therapy. Given the high heterogeneity of HBV strains and the sensitivity towards sequences changes of siRNA, finding a potent siRNA inhibitor against the conservative site on the HBV genome is essential to ensure a therapeutic application.</p> <p>Results</p> <p>Forty short hairpin RNA (shRNA) expression plasmids were constructed to target conserved regions among nine HBV genotypes. HBV 1.3-fold genome plasmids carrying various genotypes were co-transfected with shRNA plasmids into either Huh7 cells or mice. The levels of various viral markers were examined to assess the anti-HBV efficacy of siRNA. Four (B245, B376, B1581 and B1789) were found with the ability to potently inhibit HBV RNA, DNA, surface antigen (HBsAg), e antigen (HBeAg) and core antigen (HBcAg) expression in HBV genotypes A, B, C, D and I (a newly identified genotype) in Huh7 cells and in mice. No unusual cytotoxicity or off-target effects were noted.</p> <p>Conclusions</p> <p>Such siRNA suggests an alternate way of inhibiting various HBV genotypes in vitro and in vivo, promising advances in the treatment of HBV.</p

    Predictive Value of Preoperative Multidetector-Row Computed Tomography for Axillary Lymph Nodes Metastasis in Patients With Breast Cancer

    Get PDF
    Introduction: Axillary lymph nodes (ALN) status is an essential component in tumor staging and treatment planning for patients with breast cancer. The aim of present study was to evaluate the predictive value of preoperative multidetector-row computed tomography (MDCT) for ALN metastasis in breast cancer patients.Methods: A total of 148 cases underwent preoperative MDCT examination and ALN surgery were eligible for the study. Logistic regression analysis of MDCT variates was used to estimate independent predictive factors for ALN metastasis. The prediction of ALN metastasis was determined with MDCT variates through receiver operating characteristic (ROC) analysis.Results: Among the 148 cases, 61 (41.2%) cases had ALN metastasis. The cortical thickness in metastatic ALN was significantly thicker than that in non-metastatic ALN (7.5 ± 5.0 mm vs. 2.6 ± 2.8 mm, P &lt; 0.001). Multi-logistic regression analysis indicated that cortical thickness of &gt;3 mm (OR: 12.32, 95% CI: 4.50–33.75, P &lt; 0.001) and non-fatty hilum (OR: 5.38, 95% CI: 1.51–19.19, P = 0.009) were independent predictors for ALN metastasis. The sensitivity, specificity and AUC of MDCT for ALN metastasis prediction based on combined-variated analysis were 85.3%, 87.4%, and 0.893 (95% CI: 0.832–0.938, P &lt; 0.001), respectively.Conclusions: Cortical thickness (&gt;3 mm) and non-fatty hilum of MDCT were independent predictors for ALN metastasis. MDCT is a potent imaging tool for predicting ALN metastasis in breast cancer. Future prospective study on the value of contrast enhanced MDCT in preoperative ALN evaluation is warranted

    Mitochondrial Dysfunction in Neural Injury

    Get PDF
    Mitochondria are the double membrane organelles providing most of the energy for cells. In addition, mitochondria also play essential roles in various cellular biological processes such as calcium signaling, apoptosis, ROS generation, cell growth, and cell cycle. Mitochondrial dysfunction is observed in various neurological disorders which harbor acute and chronic neural injury such as neurodegenerative diseases and ischemia, hypoxia-induced brain injury. In this review, we describe how mitochondrial dysfunction contributes to the pathogenesis of neurological disorders which manifest chronic or acute neural injury

    Alkynyl-Protected Au-23 Nanocluster: A 12-Electron System

    Get PDF
    通讯作者地址: Jiang, DEA 23-gold-atom nanocluster was prepared by NaBH4-mediated reduction of a solution of PhC equivalent to CAu and Ph3PAuSbF6 in CH2Cl2. The cluster composition was determined to be [Au-23(PhC equivalent to C)(9)(Ph3P)(6)](2+) and single-crystal X-ray diffraction revealed that the cluster has an unprecedented Au-17 kernel protected by three PhC2-Au-C-2(Ph)-Au-C2Ph motifs and six Ph3P groups. The Au-17 core can be viewed as the fusion of two Au-10 units sharing a Au-3 triangle. Electronic structure analysis from DFT calculations suggests that the stability of this unusual 12-electron cluster is a result of the splitting of the superatomic 1D orbitals under D-3h symmetry of the Au-17 kernel. The discovery and determination of the structure of the Au-23 cluster demonstrates the versatility of the alkynyl ligand in leading to the formation of new cluster compounds.973 program 2014CB845603 Natural Science Foundation of China 21125102 21390390 21473139 University of California, Riversid
    corecore