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using weighted gene co-
expression network analysis
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Rong-Quan Gong1 and De-Yuan Fu2*

1Medical College of Yangzhou University, Yangzhou, Jiangsu, China, 2Department of Thyroid and
Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
Background: Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer

progression and are known to mediate endocrine and chemotherapy resistance

through paracrine signaling. Additionally, they directly influence the expression

and growth dependence of ER in Luminal breast cancer (LBC). This study aims to

investigate stromal CAF-related factors and develop a CAF-related classifier to

predict the prognosis and therapeutic outcomes in LBC.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases were utilized to obtain mRNA expression and clinical

information from 694 and 101 LBC samples, respectively. CAF infiltrations were

determined by estimating the proportion of immune and cancer cells (EPIC)

method, while stromal scores were calculated using the Estimation of STromal

and Immune cells in MAlignant Tumors using Expression data (ESTIMATE)

algorithm. Weighted gene co-expression network analysis (WGCNA) was used

to identify stromal CAF-related genes. A CAF risk signature was developed

through univariate and least absolute shrinkage and selection operator method

(LASSO) Cox regression model. The Spearman test was used to evaluate the

correlation between CAF risk score, CAF markers, and CAF infiltrations estimated

through EPIC, xCell, microenvironment cell populations-counter (MCP-

counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms.

The TIDE algorithm was further utilized to assess the response to

immunotherapy. Additionally, Gene set enrichment analysis (GSEA) was applied

to elucidate the molecular mechanisms underlying the findings.

Results: We constructed a 5-gene prognostic model consisting of RIN2, THBS1,

IL1R1, RAB31, and COL11A1 for CAF. Using the median CAF risk score as the cutoff,

we classified LBC patients into high- and low-CAF-risk groups and found that those

in the high-risk group had a significantly worse prognosis. Spearman correlation

analyses demonstrated a strong positive correlation between the CAF risk score and

stromal and CAF infiltrations, with the five model genes showing positive

correlations with CAF markers. In addition, the TIDE analysis revealed that high-

CAF-risk patients were less likely to respond to immunotherapy. Gene set
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enrichment analysis (GSEA) identified significant enrichment of ECM receptor

interaction, regulation of actin cytoskeleton, epithelial-mesenchymal transition

(EMT), and TGF-b signaling pathway gene sets in the high-CAF-risk group patients.

Conclusion: The five-gene prognostic CAF signature presented in this study was

not only reliable for predicting prognosis in LBC patients, but it was also effective

in estimating clinical immunotherapy response. These findings have significant

clinical implications, as the signature may guide tailored anti-CAF therapy in

combination with immunotherapy for LBC patients.
KEYWORDS

luminal breast cancer (LBC), cancer-associated fibroblasts (CAFs), weighted gene co-
expression network analysis (WGCNA), prognostic CAF markers, anti-CAF
therapeutic approach
1 Introduction

Breast cancer (BC) is the most prevalent cancer among women

worldwide and the second leading cause of cancer deaths (1, 2).

While the current standard treatment for breast cancer has greatly

improved survival, it remains a public health issue on a global scale

(3). LBC is a subtype of breast cancer, including Luminal A and

Luminal B, characterized by the presence of estrogen and/or

progesterone receptors on the surface of cancer cells (4).

Although LBC has the best prognosis among breast cancer

subtypes, approximately 20-40% of LBCs eventually develop

distant metastases, with half occurring 5 years or later after the

diagnosis of the primary tumor (5). The tumor microenvironment

(TME) in breast cancer comprises local factors, cancer cells,

immune cells and stromal cells of the local and distant tissues (6,

7). Accumulating evidence indicated that the interaction between

LBC cells and their microenvironment plays important roles in

tumor proliferation, propagation and response to therapies (8–10).

CAFs a r e impor t an t componen t s o f the tumor

microenvironment (TME) and are widely distributed in tumor

stroma (11, 12). They play a crucial role in promoting

tumor growth through direct effects on tumor cells and various

interactions with receptors and ligands (13, 14). Moreover, they

indirectly stimulate tumor growth and migration by releasing

growth factors, cytokines, and exosomes, inducing metabolic

reprogramming and anti-tumor resistance, and suppressing the

immune system (15–17). Additionally, CAFs help to create a

physical barrier through the deposition and reorganization of the

extracellular matrix, which supports tumor cell invasion and

restrains antitumor leukocyte infiltration, leading to tumor

progression, immune evasion, and therapy resistance (18).

Studies have shown that CAFs can affect the response of LBC to

hormone therapy, a common treatment, by altering the expression

of estrogen receptors on cancer cells (19–21). Targeting CAFs can

be achieved through various methods such as influencing secreted

factors and signaling pathways, inducing a quiescent state in CAFs

or targeting CAF-derived cells (18, 22). For example, losartan, an
02
angiotensin receptor blocker, can convert myofibroblast CAFs into

a quiescent state and enhance immune cell activity, thus improving

the response of breast cancer cells to immune checkpoint blockers

(23). In addition, blocking CD10 and GPR77 with neutralizing

antibodies can decrease tumor growth and increase chemotherapy

sensitivity in breast cancer models (24). Therefore, identifying

common markers of CAFs can lead to the discovery of more

specific markers and therapeutic targets for LBC.

Weighted gene co-expression network analysis (WGCNA) is a

powerful bioinformatics algorithm that can identify highly and

coordinately expressed genes and group them into gene modules to

explore their relationships with a phenotype of interest (25). WGCNA

has been previously used to identify cancer-associated fibroblast (CAF)

markers (26–29). However, there has been no WGCNA analysis

conducted on CAF and stromal infiltrations in LBC.

In this study, we employed WGCNA simultaneously on two

transcriptome datasets from TCGA and GEO databases. We

identified hub modules that were most correlated with stromal

CAF infiltrations. Using univariate and Least Absolute Shrinkage

and Selection Operator (LASSO) Cox regression analyses, we

identified RIN2, THBS1, IL1R1, RAB31, and COL11A1 as

prognostic CAF markers. We then constructed a five-gene CAF

signature that could predict prognosis and therapeutic responses in

LBC. Our findings suggest that the CAFmodel could be a promising

anti-CAF therapeutic approach for LBC.
2 Materials and methods

2.1 The collection and preparation of data

The transcript per million (TPM) format RNA-seq data and

clinical information relevant to Breast Invasive Carcinoma (TCGA-

BRCA) samples were obtained from TCGA datasets (https://

portal.gdc.cancer.gov/). The gene expression profiling dataset

(GSE47994) was obtained from the Gene Expression Omnibus

(https://www.ncbi.nlm.nih.gov/) database (30). We then screened
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a total of 694 LBC patients from the TCGA-BRCA dataset and 101

LBC patients from the GSE47994 dataset who had prognostic data

available, with follow-up times exceeding 365 days.
2.2 The estimation of CAF infiltration and
the calculation of stromal score

Four methods were utilized to estimate the abundance of CAFs,

including the Estimate the Proportion of Immune and Cancer cells

(EPIC) algorithm based on cell-type deconvolution using

constrained least square optimization (31), the xCell algorithm

based on gene signature enrichment (32), the microenvironment

cell populations-counter (MCP-counter) based on marker gene

expressions (33), and the Tumor Immune Dysfunction and

Exclusion (TIDE) algorithms, which also can predict anti-PD1

and anti-CTLA4 responses in tumor patients (34). The first three

methods were executed via the deconvolute() function of the

immunedeconv R package (version 2.0.3) (35), while the TIDE

method was implemented through http://tide.dfci.harvard.edu/.

Additionally, the Estimation of STromal and Immune cells in

MAlignant Tumor tissues using Expression data (ESTIMATE)

algorithm was utilized to calculate the stromal score, which

indicates the level of stromal infiltration in each tumor sample,

through the estimate R package (version 1.0.13) (36).
2.3 The creation of CAF and stromal co-
expression networks

TheWGCNAR package (version 1.72) was utilized to construct co-

expression networks and identify hub genes that target cancer-

associated fibroblast (CAF) infiltrations and stromal scores (25). The

input genes for network construction were selected based on themedian

absolute deviation (MAD), with the top 5,000 genes selected for both the

TCGA-BRCA and GSE47994 cohorts. The Pearson’s correlation

similarity matrix was calculated between each pair of genes (sij, where

ij represents the gene pairs) and raised to a soft-thresholding power b
(Sbij ), based on the scale-free topology network criterion. The adjacency

matrix was then clustered using the topological overlapmeasure (TOM)

and dissimilarity (1-TOM) between genes, and a dynamic tree cut

algorithm was applied to the dendrogram to identify gene modules with

a minimum of 30 genes in each module. The first principal component

of each module’s expression was summarized as a module eigengene

(ME), and the Pearson’s correlations betweenMEs and EPIC-quantified

CAF infiltrations, as well as the stromal score, were assessed to identify

the most correlated module for further analysis. Hub genes were then

identified by overlapping the most correlated module genes between the

TCGA-BRCA and GSE47994 cohorts.
2.4 The analysis of gene ontology and the
kyoto encyclopedia of genes and genomes

The clusterProfiler R package (version 3.14.3) was utilized to

analyze the hub genes’ biological functions, which included
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biological processes (BPs), molecular functions (MFs), and

cellular components (CCs), as well as pathways according to

GO and KEGG databases (37). p < 0.05 was considered

statistically significant.
2.5 The creation and verification of a
predictive algorithm

For CAF risk model construction, 694 LBC cases from TCGA-

BRCA were selected based on their large sample size. The validation

cohort consisted of 101 LBC cases from GSE47994 cohort.

Univariate Cox regression analysis was performed to identify

prognostic stromal CAF hub genes for overall survival (OS).

Genes with p < 0.05 were selected for LASSO Cox regression

analysis with 1,000 iterations using glmnet R package to reduce

the number of genes (38). Then, the CAF risk model was

constructed as follows: CAF risk score = ∑ (bi * Expi), where bi is
the LASSO coefficient of ith gene and Expi is the expression value of

ith gene. Using the median CAF risk score of the training cohort as

the threshold, LBC patients from both cohorts were classified into

high- and low-CAF-risk groups and the OS difference between the

two groups was estimated using Kaplan–Meier curves and the log-

rank test.
2.6 The collection of CAF markers and the
analysis of their correlation

We collected CAF specific and nonspecificmarkers from published

literature (39, 40). To verify the reliability of our CAFmodel markers in

LBC, we examined the Spearman’s correlations between the CAF risk

score and the stromal score, as well as various CAF infiltration

estimates (EPIC, xCell, MCP-counter, and TIDE). We also analyzed

the correlations between CAF model genes and published CAF

markers in both TCGA-BRCA and GSE47994 cohorts.
2.7 The prediction of chemotherapy and
immunotherapy responses

Using the Genomics of Drug Sensitivity in Cancer [GDSC

(https://www.cancerrxgene.org/)] database (41), half-maximal

inhibitory concentration (IC50) values of common drugs

(bleomycin, lapatinib, paclitaxel, camptothecin, cisplatin,

docetaxel, methotrexate, and sunitinib) in each LBC sample were

estimated based on the transcriptome data by ridge regression with

ten-fold cross-validation in pRRophetic R package (version 0.5)

(42). The TIDE (http://tide.dfci.harvard.edu/) online algorithm was

then adopted for immune checkpoint blockade therapy response

predictions (34). The chi-squared test was used to examine

differences in response rates between high- and low-CAF-risk

groups. The predictive efficacy of the CAF risk signature was

evaluated by ROC curves and area under the curve (AUC) values.
frontiersin.org
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2.8 Analysis of enrichment

To explore the enriched hallmark and KEGG pathway gene sets

between high- and low-CAF-risk groups in GSE47994, gene set

enrichment analysis (GSEA) was performed using the enrichplot

and clusterProfiler R packages. The gene sets used were derived

from the Molecular Signatures Database (MSigDB), specifically the

“c2.cp.kegg.v7.4.symbols” and “h.all.v7.4.symbols” gene sets (43).

Additionally, the enrichment scores of ECM receptor interaction,

regulation of actin cytoskeleton, and TGF-b signaling pathway

hallmark gene sets were calculated using ssGSEA (44). Finally,

Spearman’s correlation analysis was performed to assess the

correlation between the CAF risk score and gene set

enrichment scores.
2.9 The verification of results using the
cancer cell line encyclopedia and human
protein atlas databases

To validate the findings at the cellular level, mRNA expressions

of the identified markers in 38 fibroblasts and 51 BC cell lines were

downloaded from the Cancer Cell Line Encyclopedia [CCLE

(https://portals.broadinstitute.org/ccle)] database (45). Expression

patterns of these markers in fibroblasts and CRC cell lines were

examined using heat maps and Wilcoxon tests. Additionally,

immunohistochemical (IHC) staining images of these markers in

LBC tissues were downloaded from the Human Protein Atlas [HPA

(https://www.proteinatlas.org/)] online database (46).
2.10 Statistical analysis of the data

R software (version 4.2.2; https://www.r-project.org/) was used

for all statistical analyses. The median CAF risk score was used as

the cutoff value for each cohort to divide LBC patients into high-

and low-CAF-risk subgroups. Pairwise comparisons were

performed using the Wilcoxon test. Pearson correlation

coefficient analysis was performed to evaluate the correlation

between genes. Overall survival comparisons were made using the

Kaplan-Meier curve with the log-rank test, which were adopted via

the survival and survminer R packages. p < 0.05 was considered

statistically significant.
3 Results

3.1 The prognostic value of CAF
infiltrations and stromal scores
in LBC patients

The flowchart of this research is displayed in Figure 1. CAF

infiltrations were predicted by multiple methods, including EPIC,

xCell, MCP-counter, and TIDE. The stromal score was calculated

by the estimate algorithm. Their prognostic values on overall

survival (OS) were evaluated via log-rank tests. Kaplan-Meier
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curves indicated that multiple higher CAF infiltrations and

stromal scores were significantly associated with poorer OS in

LBC patients. CAF_EPIC, CAF_TIDE, and stromal scores were

significantly associated with poorer OS in TCGA-BRCA

(Figures 2A–C), and CAF_EPIC, CAF_mcp-counter, and stromal

scores were significantly associated with poorer OS in GSE47994

(Figures 2D–F), which highlights the importance of further studies

exploring CAF and stromal-associated genes in LBC. In this study,

the EPIC-estimated CAF abundances and stromal scores were

summarized as phenotype data for subsequent analysis, and the

data from the other three estimated CAF infiltrations were used for

external validation of the identified CAF model.
3.2 Co-expression network analysis of CAF
and stromal scores in two LBC datasets

WGCNA analysis was conducted on both TCGA-BRCA and

GSE47994 datasets. To build a scale-free topology network, we

estimated the soft threshold power (b) of 7 in TCGA-BRCA (scale-

free R2 = 0.86) (Figure 3A) and 17 in GSE47994 (scale-free R2 = 0.86)

(Figure 3B). In TCGA-BRCA, the hierarchical clustering tree identified

8 co-expressionmodels (Figure 3C), and themagentamodule exhibited

the strongest positive correlation with the CAF proportion (Cor = 0.54,

P = 7e-54) and stromal score (Cor = 0.78, P = 5e-144) (Figure 3E). In

GSE47994, the dynamic hybrid cutting clustered 6 co-expression

models (Figure 3D), with the brown module showing the strongest

positive correlation with the CAF proportion (Cor = 0.88, P = 5e-25)

and stromal score (Cor = 0.92, P = 2e-31) (Figure 3F). Therefore, we

focused on these twomodules for further investigations. A total of 1718

and 158 genes were included in the magenta and brown modules,

respectively. In the magenta module, scatter plots indicated strong

correlations between MM and GS for CAF (Cor = 0.64, p =1.3e-198)

and stromal scores (Cor = 0.88, p < 1e-200) (Figure 3G). Similarly, in

the brown module, strong correlations were observed between MM

and GS for CAF (Cor = 0.64, P = 1.1e-19) and stromal scores (Cor =

0.82, p = 7e-40) (Figure 3H). Consequently, we selected 1718 genes

from the TCGA-BRCA magenta module and 158 genes from the

GSE47994 brown module as highly associated with CAF and

stromal scores.
FIGURE 1

Work flow of this study.
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3.3 Functional analyses of
CAF-related genes

The above CAF-related genes were overlapped and screened to

135 hub genes (Figure 4A). These genes were subjected to Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses. The major enriched GO terms were related to

extracellular matrix organization, extracellular structure

organization, external encapsulating structure organization (BP),

collagen-containing extracellular matrix and endoplasmic

reticulum lumen (CC), and extracellular matrix structural

constituents and collagen binding (MF) (Figure 4B). The main

enriched KEGG pathways were human papillomavirus infection,

the PI3K-Akt signaling pathway, and protein digestion and

absorption (Figure 4C).
3.4 Construction a risk model based on
stromal CAF

The 694 LBC samples from TCGA- BRCA were used as the

training cohort owing to the larger sample size, and 101 GSE47994

samples were used as the validation group. By performing

univariate Cox regression analysis of the 135 common hub genes,

20 OS-related genes with p < 0.05 were screened out and subjected

to the following LASSO Cox regression analysis (Figures 4D, E).

Five genes were finally identified for the CAF risk model

construction: CAF risk score = expression of RIN2* 0.103 +

expression of THBS1* 0.022 + expression of IL1R1* 0.068 +

expression of RAB31* 0.055 + expression of COL11A1* 0.082

(Figure 4F). The median CAF risk score of the training cohort
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was 1.85, which was used as the cut-off value to classify LBC patients

from each cohort into high- and low-CAF-risk groups. LBC patients

in each cohort were divided into high– and low–CAF-risk groups

with the median risk score as the cutoff value. Kaplan–Meier curves

revealed that LBC patients in the high–CAF-risk group experienced

worse OS than those in the low–CAF-risk group in both TCGA-

BRCA (HR = 2.394, 95%CI: 1.531–3.745, log-rank p < 0.001)

(Figure 4G) and GSE47994 (HR = 1.627, 95%CI: 1. 036−2.558,

log-rank p = 0.032) (Figure 4H). These results indicated CAF and

stromal-related signature genes were crucial prognostic markers

in LBC.
3.5 Validation of the CAF risk score and
the five-gene signature as indicators
of CAF infiltrations

To evaluate the robustness of the CAF model as an indicator of

CAF infiltrations, Spearman’s correlation analyses were performed

between the CAF risk score and stromal score as well as CAF

abundances predicted by EPIC and three other methods: xCell,

MCP-counter, and TIDE. The CAF risk score was strongly and

positively correlated with multi-estimated CAF infiltrations and the

stromal score in both TCGA-BRCA (Figure 5A) and GSE47994

(Figure 5B) cohorts. These results confirmed that the CAF risk score

was a reliable predictor of CAF infiltrations. To further validate the

correlation of the expression levels of the five genes with CAFs, their

expression levels were compared with a set of collected CAF

markers in both TCGA-BRCA (Figures 5C, E) and GSE47994

(Figures 5D, F) cohorts. A high and positive correlation was

observed between the expression levels of the five genes and most
B C

D E F

A

FIGURE 2

(A-F) Kaplan–Meier analyses of LBC patients. Multiple higher CAF infiltrations and stromal scores were significantly associated with worse overall
survival in TCGA-BRCA (A–C) and GSE47994 (D–F).
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of the CAF markers in both cohorts. These results demonstrated

that the five genes were representative of CAFs.
3.6 Chemotherapy and immunotherapy
responses across CAF-risk groups

The standard treatment for LBC patients involves radical

surgery followed by adjuvant chemotherapy and endocrine

therapy (47). IC50 values for multiple anti-tumor drugs,

including those used in breast cancer treatment, were estimated

using the GDSC database for both the TCGA-BRCA (Figure 6A)

and GSE47994 (Figure 6B) cohorts. Wilcoxon analyses indicated
Frontiers in Oncology 06
significant differences in IC50 values between high- and low-CAF-

risk LBC patients. As for commonly used chemotherapy drugs for

breast cancer, although not both datasets showed statistical

significance, the results indicated that high-CAF-risk patients

were sensitive to Alpelisib and Epirubicin, while low-CAF-risk

patients were sensitive to Docetaxel, Fulvestrant, Lapatinib,

P a l bo c i c l i b , R i bo c i c l i b and Tamox i f en . Howev e r ,

Cyclophosphamide and Zoledronic acid exhibited different trends

between the two datasets. In addition, the results from both datasets

showed that high-CAF-risk patients were insensitive to several

other drugs, including Axitinib, Dabrafenib, Irinotecan, Sorafenib,

Topotecan, and Venetoclax. This suggests that higher CAF risk

scores are more likely to induce resistance to these drugs in breast
B

C

D

E F G H

A

FIGURE 3

(A, B) Co-expression network constructed by WGCNA. The soft-thresholding power (b) of 7 and 17 was, respectively, selected based on the scale-
free topology criterion in TCGA-BRCA (A) and GSE47994 (B). (C, D). Clustering dendrograms showing genes with similar expression patterns were
clustered into co-expression modules in TCGA-BRCA (C) and GSE47994 (D). The gray module indicates that genes were not assigned to any
module. (E, F) Module-trait relationships revealing the correlations between each gene module eigengene and phenotype in TCGA-BRCA (E) and
GSE47994 (F). (G, H) Scatter plots of the module membership (MM) and gene significance (GS) of each gene in the magenta module of TCGA-BRCA
(G) and the brown module of GSE47994 (H). The horizontal axis is the correlation between the gene and co-expression module, and the vertical axis
is the correlation between the gene and phenotype.
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cancer patients. Immunotherapy is among the most important

advances in recent oncology, particularly for triple-negative and

HER-2-positive breast cancer (48). Trials are also underway to

assess the efficacy of immune checkpoint inhibitors such as

pembrolizumab for Luminal breast cancer (49–51). To evaluate

the CAF risk score as an immunotherapy predictor for LBC

patients, the TIDE method was used. In TCGA-BRCA, the non-

responder subgroup (n = 492) exhibited significantly higher CAF

scores than the responder subgroup (n = 202) (p < 2.2e-16;

Figure 6C). Low-CAF-risk patients (144/347) displayed higher

immunotherapy sensitivity and lower TIDE scores than high-

CAF-risk patients (58/347) (p < 0.001; Figures 6D, E). In

GSE47994, the non-responder subgroup (n = 63) also had a

significantly higher CAF score than the responder subgroup (n =

38) (p = 1.9e-7; Figure 6G). Low-CAF-risk patients (31/54)
Frontiers in Oncology 07
exhibited higher immunotherapy sensitivity and lower TIDE

scores than high-CAF-risk patients (7/47) (p < 0.001; Figures 6H,

I). The AUC values of 0.711 in TCGA-BRCA (Figure 6F) and 0.811

in GSE47994 (Figure 6J) indicate the excellent performance of the

CAF model for predicting immunotherapy response.
3.7 GSEA of the five-gene CAF signature

To investigate the functional enrichment of the CAF signature,

GSEA was conducted on the TCGA-BRCA dataset to compare the

high- and low-CAF-risk groups. The analysis revealed significant

enrichment in KEGG signaling pathways associated with ECM

receptor interaction, focal adhesion, pathways in cancer,

regulation of actin cytoskeleton, and tight junction in the high-
A B

D E

F

G H

C

FIGURE 4

(A) The intersection of TCGA-BRCA magenta and GSE47994 brown module genes was presented in the Venn diagram. (B, C) GO analyses of the
enriched biological process (BP), cellular component (CC), and molecular function (MF) terms (B) and KEGG pathway analysis (C) of the 135 genes.
(D) Univariate Cox analysis for the screening of overall survival-associated genes in TCGA-BRCA. (E) Coefficient profiles of least absolute shrinkage
and selection operator (LASSO) Cox regression analysis, and the adjustment parameter (lambda) was calculated based on the partial likelihood
deviance with ten-fold cross validation. (F) Formulation of the CAF risk model. (G, H) Kaplan–Meier analyses identified gastric cancer patients in the
high–CAF-risk group which exhibited worse overall survival in both TCGA-BRCA (G) and GSE47994 (H) cohorts.
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CAF-risk group (Figure 7A). Moreover, the genes in the high-CAF-

risk group were significantly enriched in Hallmarker gene sets

related to angiogenesis, apical junction, coagulation, epithelial-

mesenchymal transition (EMT), and inflammatory response

(Figure 7B). Additionally, ssGSEA results indicated that the CAF

risk score was positively correlated with enrichment scores for ECM

receptor interaction, regulation of actin cytoskeleton, and TGF-b
signaling pathway in both TCGA-BRCA (Figure 7C) and

GSE47994 (Figure 7D).
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3.8 Cross-dataset validation of important
genes in CCLE and HPA

Based on the CCLE database, the mRNA expressions of the five

hub genes (RIN2, THBS1, IL1R1, RAB31, COL11A1) were verified

to be higher in fibroblast cell lines than those in BC cell lines

(Wilcoxon test, all p < 0.001; Figures 8A, B). Additionally, to

determine the protein expression characteristics of these CAF

signature genes, the IHC images from the HPA database were
B

C D

E

F

A

FIGURE 5

(A, B) Spearman’s correlation analyses revealing the CAF risk score was strongly and positively correlated with stromal scores and multi-estimated
CAF infiltrations in TCGA-BRCA (A) and GSE47994 (B) cohorts. (C, D) The heat map revealing the expression patterns of CAF markers identified five
CAF genes with the CAF risk score in TCGA-BRCA (C) and GSE47994 (D) cohorts. (E, F) The CAF risk score and five signature genes were positively
correlated with literature that reported CAF markers in TCGA-BRCA (E) and GSE47994 (F) cohorts.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1191660
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2023.1191660
analyzed. The data demonstrated that these proteins (RIN2,

THBS1, IL1R1 and RAB31) were deeply stained in BC stroma

(Figure 8C). These verifications suggest that these genes might be

CAF-specific markers.
3.9 Correlation between hub genes and
HER2 in LBC

It is well known that the HER2 gene plays an important role in

breast cancer, and overexpression or amplification of HER2 can

lead to excess HER2 protein on the surface of breast cancer cells,

leading to uncontrolled cell growth, tumor development and

progression. To evaluate the correlation between the expression of

the five hub genes (RIN2, THBS1, IL1R1, RAB31, COL11A1) and

HER2 gene expression, we analyzed the gene expression data from

TCGA-BRCA (Figure 8D) and GSE47994 (Figure 8E). Pearson

correlation coefficient analysis revealed a significant positive

correlation between the expression levels of these genes and
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HER2 gene expression (p < 0.05), with the exception of THBS1

and IL1R1 in GSE47994.
4 Discussion

Breast cancer is a complex and heterogeneous disease, consisting

of multiple subtypes with distinct molecular and clinical

characteristics (52). LBC is one of the most common subtypes, and

some patients develop drug resistance and distant metastasis, and the

prognosis of these patients is poor (4). While the molecular

mechanisms underlying LBC development and progression have

been extensively studied, the role of CAF in this subtype remains

unclear. CAFs are a key component of the tumor microenvironment

and have been shown to play a critical role in promoting tumor

growth and progression, including in LBC (14, 19). Consistently, we

observed that higher CAF and stromal scores were associated with

worse OS after initial treatment in LBC. Therefore, identifying CAF-

related factors and developing a CAF-related classifier for predicting
B
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E
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FIGURE 6

(A, B) Box plots comparing IC50 values of several chemotherapy drugs between high– and low–CAF-risk groups in TCGA-BRCA (A) and GSE47994
(B) cohorts. (C–J) TIDE immunotherapy prediction analyses. (C, G) The CAF risk score between TIDE-predicted immunotherapy-responders and
non-responders in TCGA-BRCA (C) and GSE47994 (G); (D, H) Distributions of responders and non-responders in high– and low– CAF-risk groups in
TCGA-BRCA (D) and GSE47994 (H); (E, I) Distributions of TIDE scores in high– and low– CAF-risk groups in TCGA-BRCA (E) and GSE47994 (I); (F, J)
ROC curves of the CAF risk score in predicting immunotherapy responses in TCGA-BRCA (F) and GSE47994 (J). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1191660
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2023.1191660
prognosis and therapeutic effects in LBC is of great significance. This

is the first study utilizing WGCNA and multiple computational

algorithms to uncover mutual co-expression networks between

CAF and stromal components in two LBC cohorts: TCGA-BRCA

and GSE47994. Through the application of univariate Cox and

LASSO regression algorithms, a five-gene prognostic model for

CAF (comprising RIN2, THBS1, IL1R1, RAB31, and COL11A1)

was developed and subsequently validated. We found that LBC

patients with a low CAF risk (using the median CAF risk score of

1.85 in the training set as a threshold) may benefit from a variety of

antineoplastic agents, such as Axitinib, Docetaxel, Fulvestrant,

Lapatinib, Palbociclib, Ribociclib, Tamoxifen, and others, indicating

that high CAF infiltration may contribute to these drugs resistance.

On the other hand, LBC patients with a high CAF risk may be more

responsive to treatments such as Alpelisib, Epirubicin, and dasatinib.

We also utilized the TIDE online algorithm and observed a strong

correlation between lower CAF risk scores and improved

immunotherapeutic response in LBC patients. However, Further

experiments are required to elucidate the interplay between CAFs

and Immunotherapy. It’s worth noting that the TIDE algorithm

primarily predicts the responses to anti-PD1 and anti-CTLA4
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treatments in tumor patients, thus making pembrolizumab a more

suitable candidate for follow-up studies.

To ensure the robustness of our model and avoid over-fitting,

we employed four bioinformatics methods to quantify CAF

infiltrations in LBC. We used the EPIC method for model

construction and xCell, MCP-counter, and TIDE methods for

correlation verification. Our results demonstrated a strong

correlation between our model and CAF infiltrations, as well as

CAF markers. Furthermore, based on analysis of the CCLE and

HPA databases, we identified five genes as CAF-specific markers for

LBC, with significantly higher expression observed in fibroblast cell

lines and stromal parts of LBC. These findings further support the

accuracy of our model in assessing CAF infiltration levels in LBC.

To investigate biological pathways associated with CAF risk in

LBC, we performed GSEA analysis on TCGA-BRCA and GSE47994

dataset. GSEA revealed that ECM receptor interaction, focal

adhesion, pathways in cancer, regulation of actin cytoskeleton and

tight junction were highly and significantly enriched in the high–

CAF-risk group; ssGSEA results also showed that the CAF risk score

was positively correlated with ECM receptor interaction, regulation of

actin cytoskeleton, and TGF-b signaling pathway enrichment scores
B

C

D

A

FIGURE 7

Gene set enrichment analysis (GSEA) of KEGG (A) and hallmark (B) gene sets between high‐and low‐CAF risk groups. (C, D) ssGSEA results showed
CAF risk score was positively correlated with ECM receptor interaction, regulation of actin cytoskeleton, and TGF-b signaling pathway enrichment
scores in both TCGA-BRCA (C) and GSE47994 (D).
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in both two cohorts. CAFs play a crucial role in cancer progression by

altering the extracellular matrix (ECM) composition and promoting

cancer cell invasion and metastasis through the interaction of ECM

proteins with specific receptors on the surface of cells (53–55).

Furthermore, CAFs secrete fibronectin, which activates integrin

receptors on cancer cells, triggering signaling pathways that

enhance cancer cell proliferation, survival, and migration (56, 57).

In addition, CAFs regulate the actin cytoskeleton of cancer cells,

facilitating their ability to invade and migrate, by secreting growth

factors such as TGF-b that promote the formation of stress fibers

essential for cell migration and invasion (58, 59).

With respect to the five identified markers in the model, RIN2 is a

gene that encodes a protein that interacts with Ras and Rab proteins,

which are involved in cell signaling and membrane trafficking (60, 61).
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Biallelic defects in RIN2 are associated with MACS syndrome, a

condition characterized by macrocephaly, alopecia, cutis laxa, and

scoliosis, as well as with RIN2 syndrome, a related connective tissue

disorder presenting similar symptoms (60, 62). Chiara Sandri et al.

identified the Ras and Rab5 interacting protein RIN2 as a key effector in

endothelial cells that interacts with R-Ras and mediates the pro-

adhesion and tumor angiogenic activities of R-Ras (63).

Furthermore, RIN2 has been identified as a signature gene that can

be used to evaluate the clinical prognosis of patients with colorectal

cancer, enabling more personalized diagnosis and treatment of the

disease (64). THBS1 is a gene that encodes thrombospondin 1, a

protein that is involved in cell adhesion, angiogenesis and

inflammation (65). Previous studies have shown that THBS1 is

highly expressed in gastric cancer (66), breast cancer (67), melanoma
B
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FIGURE 8

(A, B) The mRNA expression levels of the five CAF genes in the fibroblasts and breast cancer cell lines were illustrated in the heat map (A) and
compared by Wilcoxon analysis (B). (C) Protein expressions of RIN2, THBS1, IL1R1 and RAB31 in breast cancer specimens from the Human Protein
Atlas database. Correlation between five hub genes and HER2 in TCGA-BRCA (D) and GSE47994 (E).
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(68) and oral squamous carcinoma (69), promoting tumor cell

adhesion, proliferation, apoptosis, invasion and metastasis. THBS1

can modulate the invasion and migration of BC cells by affecting the

TME, especially the CAFs (70). We observed that high-CAF-risk group

LBC patients were less sensitive to several drugs, including docetaxel,

which is consistent with the finding that up-regulation of THBS1

following neoadjuvant chemotherapy containing docetaxel was

associated with docetaxel chemotherapy resistance in breast cancer

patients (71). Additionally, THBS1 can protect MCF-7 cells from

docetaxel-induced apoptosis by activating the integrin b1/mTOR

pathway (71). IL1R1 is expressed in various types of cancer cells and

CAF, which are stromal cells that support tumor growth and survival

(72–74). IL1R1 signaling can modulate various aspects of tumor

biology, such as angiogenesis, invasion, metastasis, immunity and

drug resistance (75). Rosamaria et al. found that the expression of

IL1R1 is regulated by hypoxia-inducible factor 1a (HIF-1a) and G-

protein estrogen receptor (GPER) in breast cancer cells and CAFs (72).

Puran Zhang et al. found that high expression of IL1R1 in gastric

cancer is indicative of poor prognosis and a poorer response to 5-

fluorouracil-based adjuvant chemotherapy and immune checkpoint

blockade (74). In addition, IL1R1 has been found to be upregulated in

ALDH+ cells and plays a crucial role in driving cancer stem cell (CSC)

activity, which can lead to resistance to adjuvant endocrine therapies,

including tamoxifen and fulvestrant, in breast cancer and promote

bone metastasis (76, 77). RAB31, a protein secreted by CAF, is

associated with malignant behavior in breast (78), hepatocellular

(79), gastric (80), and colorectal cancers (81). Studies have shown the

expression levels of RAB31 may serve as a crucial regulator of the

transition between invasiveness and proliferation of breast cancer cells

(78, 82). Recent research has shown that RAB31 is capable of inhibiting

the TGF-b pathway by decreasing TGFB1 mRNA and antigen levels,

thereby exerting an impact on themigration, invasion, and apoptosis of

breast cancer cells (82). Additionally, Rab31 mediates cisplatin

resistance and metastasis in stomach adenocarcinoma via epithelial-

mesenchymal transition pathway (83). COL11A1 is a gene that

encodes for collagen type XI alpha 1, a protein that is part of the

extracellular matrix (ECM) (84). Studies have shown that COL11A1

can activate CAFs by stimulating the TGF-b signaling pathway that

regulates cell proliferation and differentiation (85, 86). COL11A1 can

also promotes cancer cell migration, metastasis, and therapy resistance

by activating multiple signaling pathways (84, 87). Notably, COL11A1

has been shown to induce chemoresistance to cisplatin and paclitaxel in

ovarian cancer cells through the AKT and Twist1 pathways (88, 89).

Moreover, it may promote tumor immune infiltration and lead to a

poor prognosis in breast cancer patients (90). However, there is not

much functional validation of the five genes involved in risk signatures

in the CAFs of LBC, which requires us to conduct further experiments

on the five CAF markers in the future to evaluate the invasion and

metastasis, drug resistance and immunosuppression of LBC.

It is worthmentioning that, in the initial analysis, we conducted the

same analysis in the TCGA-BRCA database for different subtypes of

breast cancer and found no significant difference in survival when

analyzing CAF infiltration and stromal score in triple-negative breast

cancer and HER2-positive breast cancer. However, Pearson correlation

coefficient analysis revealed a significant positive correlation between

the expression levels of these genes and HER2 gene expression in LBC.
Frontiers in Oncology 12
Meanwhile, targeted immunotherapy targeting cancer-associated

fibroblasts has been reported to overcome drug resistance in HER2+

breast cancer treatment (91). Therefore, more analytical methods and

experiments are needed to investigate the potential relationship

between HER2 gene and CAF signature genes.

In conclusion, our study identified a five-gene CAF signature for

predicting prognosis and therapeutic responses in LBC. Our findings

provide important insights into the role of CAFs in promoting tumor

growth and progression and highlight the importance of developing

combination therapies that target both CAFs and the immune system.

Our study has important clinical implications for guiding tailored anti-

CAF therapy in combination with immunotherapy for LBC patients.

There are also some limitations to our study. First, our study is

retrospective, and therefore, our findings should be validated in a

prospective study. Second, we did not perform functional experiments

to validate the role of the identified CAF markers in promoting tumor

growth and progression in LBC. Future studies should investigate the

molecular mechanisms underlying the identified CAF markers and

develop targeted therapies that can inhibit CAFs and promote anti-

tumor immune responses.
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