57 research outputs found

    The state of the market and the contrarian strategy: Evidence from China’s stock market

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 The Chinese Economic Association.Using the most comprehensive weekly dataset of β€˜A’ shares listed on the Chinese stock market, this paper examines short-term contrarian strategies under different market states from 1995–2010. We find statistically significant profits from contrarian strategies, especially during the period after 2007, when China (along with other countries) experienced an economic downturn following the worldwide financial crisis. Our empirical evidence suggests that: (1) no significant profit is generated from either momentum or contrarian strategies in the intermediate horizon; (2) after microstructure effects are adjusted for, contrarian strategies with only four to eight weeks holding periods based on the stocks’ previous four to eight week's performance generate statistically significant profits of around 0.2% per week; (3) the contrarian strategy following a β€˜down’ market generates higher profit than those following an β€˜up’ market, suggesting that a contrarian strategy could be used as a shelter when the market is in decline. The profits following a β€˜down’ market are robust after risk adjustment

    Analysis of the forming characteristics for Cu/Al bimetal tubes produced by the spinning process

    Get PDF
    Tube spinning technology represents a process with high forming precision and good flexibility and is increasingly being used in the manufacture of bimetal composite tubular structures. In the present study, a forming analysis of clad tube and base tube in spinning process was conducted through numerical simulations and experiments. There was an equivalent stress transition on the interface since the stress transmission was retarded from clad tube to base tube. The yield strength became a main consideration during a design bimetal composite tube. Meanwhile, the strain distributions in axial direction, tangential direction, and radial direction were also investigated to determine the deformation characteristics of each component. As the press amount increased, the strain of clad tube changed more than base tube. As the feed rate increased, the strain decreased in axial direction and tangential direction but almost unchanged in radial direction. Simultaneously, a method for controlling the wall thickness of the clad tube and the base tube is proposed. These results to guide the design of bimetal tube composite spinning process have the certain meanings

    Nonlinear Regression Estimation Using Subset-Based Kernel Principal Components

    Get PDF
    We study the estimation of conditional mean regression functions through the so-called subset-based kernel principal component analysis (KPCA). Instead of using one global kernel feature space, we project a target function into different localized kernel feature spaces at dierent parts of the sample space. Each localized kernel feature space reflects the relationship on a subset between the response and covariates more parsimoniously. When the observations are collected from a strictly stationary and weakly dependent process, the orthonormal eigenfunctions which span the kernel feature space are consistently estimated by implementing an eigenanalysis on the subset-based kernel Gram matrix, and the estimated eigenfunctions are then used to construct the estimation of the mean regression function. Under some regularity conditions, the developed estimator is shown to be uniformly consistent over the subset with a convergence rate faster than those of some well-known nonparametric estimation methods. In addition, we also discuss some generalizations of the KPCA approach, and consider using the same subset-based KPCA approach to estimate the conditional distribution function. The numerical studies including three simulated examples and two real data sets illustrate the reliable performance of the proposed method. In particular, the improvement over the global KPCA method is evident

    Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function

    Get PDF
    SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIΞ± promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function

    Nanopore-patterned CuSe drives the realization of PbSe-CuSe lateral heterostructure

    Full text link
    Monolayer PbSe has been predicted to be a two-dimensional (2D) topological crystalline insulator (TCI) with crystalline symmetry-protected Dirac-cone-like edge states. Recently, few-layered epitaxial PbSe has been grown on the SrTiO3 substrate successfully, but the corresponding signature of the TCI was only observed for films not thinner than seven monolayers, largely due to interfacial strain. Here, we demonstrate a two-step method based on molecular beam epitaxy for the growth of the PbSe-CuSe lateral heterostructure on the Cu(111) substrate, in which we observe a nanopore patterned CuSe layer that acts as the template for lateral epitaxial growth of PbSe. This further results in a monolayer PbSe-CuSe lateral heterostructure with an atomically sharp interface. Scanning tunneling microscopy and spectroscopy measurements reveal a four-fold symmetric square lattice of such monolayer PbSe with a quasi-particle band gap of 1.8 eV, a value highly comparable with the theoretical value of freestanding PbSe. The weak monolayer-substrate interaction is further supported by both density functional theory (DFT) and projected crystal orbital Hamilton population, with the former predicting the monolayer's anti-bond state to reside below the Fermi level. Our work demonstrates a practical strategy to fabricate a high-quality in-plane heterostructure, involving a monolayer TCI, which is viable for further exploration of the topology-derived quantum physics and phenomena in the monolayer limit.Comment: 26 pagres, 6 Figure

    Aroma Quality Evaluation of High-Quality and Quality-Deficient Black Tea by Electronic Nose Coupled with Gas Chromatography-Mass Spectrometry

    Get PDF
    According to the results of sensory evaluation performed by experts, 14 black tea samples were divided into two groups based on their aroma quality: high-quality and quality-deficient black tea. Using fast gas chromatography-electronic-nose (GC-E-Nose) and gas chromatography-mass spectrometry (GC-MS) combined with multivariate statistical analysis, discriminant analysis of the two groups were carried out, and the key differential components between these groups were selected. The results showed that 117-dimensional dataset was obtained by the fusion of the GC-E-Nose (44-dimensional) and GC-MS (73-dimensional) data and used to establish a model for accurate classification of the two types of black tea employing orthogonal partial least squares-discriminant analysis (OPLS-DA). The model’s explanatory and predictive capacity (R2Y = 0.976, Q2 = 0.959) were better than those of the model established based on the GC-E-Nose or GC-MS data. Based on variable important in projection (VIP) scores > 1.6 and P < 0.05, eight key aroma components including dimethyl sulfide (B3 and B25), Ξ²-ionone (A59), (3E)-4,8-dimethylnon-1,3,7-triene (A20), dihydroactinidiolide (A64), linalool (A17), phenylethyl alcohol (A19), Ξ΄-octyl lactone (A41) and Ξ³-nonalatone (A45) were selected, which played an important role in the classification. These results showed that GC-E-Nose combined with GC-MS allows rapid and accurate discrimination between quality-deficient and high-quality black tea, which can be used as a supplement to traditional sensory evaluation, providing technical support for quality control and improvement of black tea

    Hollow-Core Negative Curvature Fiber with High Birefringence for Low Refractive Index Sensing Based on Surface Plasmon Resonance Effect

    Get PDF
    In this paper, a hollow-core negative curvature fiber (HC-NCF) with high birefringence is proposed for low refractive index (RI) sensing based on surface plasmon resonance effect. In the design, the cladding region of the HC-NCF is composed of only one ring of eight silica tubes, and two of them are selectively filled with the gold wires. The influences of the gold wires-filled HC-NCF structure parameters on the propagation characteristic are investigated by the finite element method. Moreover, the sensing performances in the low RI range of 1.20–1.34 are evaluated by the traditional confinement loss method and novel birefringence analysis method, respectively. The simulation results show that for the confinement loss method, the obtained maximum sensitivity, resolution, and figure of merit of the gold wires-filled HC-NCF-based sensor are βˆ’5700 nm/RIU, 2.63 Γ— 10βˆ’5 RIU, and 317 RIUβˆ’1, respectively. For the birefringence analysis method, the obtained maximum sensitivity, resolution, and birefringence of the gold wires-filled HC-NCF-based sensor are βˆ’6100 nm/RIU, 2.56 Γ— 10βˆ’5 RIU, and 1.72 Γ— 10βˆ’3, respectively. It is believed that the proposed gold wires-filled HC-NCF-based low RI sensor has important applications in the fields of biochemistry and medicine

    Surface functionalization of vertical graphene significantly enhances the energy storage capability for symmetric supercapacitors

    Get PDF
    Vertical graphene (VG) sheets, which consist of few-layer graphene vertically aligned on the substrate with three dimensionally interconnected porous network, make them become one of the most promising energy storage electrodes, especially for SCs. Nevertheless, the intrinsic hydrophobic nature of pristine VG sheets severely limited its application in aqueous SCs. Here, electrochemical oxidation strategy is adopted to increase the hydrophilicity of VG sheets by introducing oxygen functional groups so that the aqueous electrolyte can fully be in contact with the VG sheets to improve charge storage performance. Our work demonstrated that the introduction of oxygen functional groups not only greatly improved the hydrophilicity but also generated a pseudo capacitance to increase the specific capacitance. The resulting capacitance of electrochemically oxidized VG for 7 min (denoted as EOVG-7) exhibited three orders of magnitude higher (1605 mF/cmΒ²) compared to pristine VG sheets. Through assembled two EOVG-7 electrodes, a symmetric supercapacitor demonstrated high specific capacitance of 307.5 mF/cmΒ², high energy density of 138.3 ΞΌWh/cm2 as well as excellent cyclic stability (84% capacitance retention after 10000 cycles). This strategy provides a promising way for designing and engineering carbon-based aqueous supercapacitors with high performance

    Understanding PRRSV Infection in Porcine Lung Based on Genome-Wide Transcriptome Response Identified by Deep Sequencing

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) has been one of the most economically important diseases affecting swine industry worldwide and causes great economic losses each year. PRRS virus (PRRSV) replicates mainly in porcine alveolar macrophages (PAMs) and dendritic cells (DCs) and develops persistent infections, antibody-dependent enhancement (ADE), interstitial pneumonia and immunosuppression. But the molecular mechanisms of PRRSV infection still are poorly understood. Here we report on the first genome-wide host transcriptional responses to classical North American type PRRSV (N-PRRSV) strain CH 1a infection using Solexa/Illumina's digital gene expression (DGE) system, a tag-based high-throughput transcriptome sequencing method, and analyse systematically the relationship between pulmonary gene expression profiles after N-PRRSV infection and infection pathology. Our results suggest that N-PRRSV appeared to utilize multiple strategies for its replication and spread in infected pigs, including subverting host innate immune response, inducing an anti-apoptotic and anti-inflammatory state as well as developing ADE. Upregulation expression of virus-induced pro-inflammatory cytokines, chemokines, adhesion molecules and inflammatory enzymes and inflammatory cells, antibodies, complement activation were likely to result in the development of inflammatory responses during N-PRRSV infection processes. N-PRRSV-induced immunosuppression might be mediated by apoptosis of infected cells, which caused depletion of immune cells and induced an anti-inflammatory cytokine response in which they were unable to eradicate the primary infection. Our systems analysis will benefit for better understanding the molecular pathogenesis of N-PRRSV infection, developing novel antiviral therapies and identifying genetic components for swine resistance/susceptibility to PRRS
    • …
    corecore