59 research outputs found

    Cell type-specific changes in Wnt signaling and neuronal differentiation in the developing mouse cortex after prenatal alcohol exposure during neurogenesis

    Get PDF
    Fetal Alcohol Spectrum Disorder (FASD) encompasses an array of effects of prenatal alcohol exposure (PAE), including physical abnormalities and cognitive and behavioral deficits. Disruptions of cortical development have been implicated in multiple PAE studies, with deficits including decreased progenitor proliferation, disrupted neuronal differentiation, aberrant radial migration of pyramidal neurons, and decreased cortical thickness. While several mechanisms of alcohol teratogenicity have been explored, how specific cell types in the brain at different developmental time points may be differentially affected by PAE is still poorly understood. In this study, we used single nucleus RNA sequencing (snRNAseq) to investigate whether moderate PAE from neurulation through peak cortical neurogenesis induces cell type-specific transcriptomic changes in the developing murine brain. Cluster analysis identified 25 neuronal cell types, including subtypes of radial glial cells (RGCs), intermediate progenitor cells (IPCs), projection neurons, and interneurons. Only Wnt-expressing cortical hem RGCs showed a significant decrease in the percentage of cells after PAE, with no cell types showing PAE-induced apoptosis as measured by caspase expression. Cell cycle analysis revealed only a subtype of RGCs expressing the downstream Wnt signaling transcription factor Tcf7l2 had a decreased percentage of cells in the G2/M phase of the cell cycle, suggesting decreased proliferation in this RGC subtype and further implicating disrupted Wnt signaling after PAE at this early developmental timepoint. An increased pseudotime score in IPC and projection neuron cell types indicated that PAE led to increased or premature differentiation of these cells. Biological processes affected by PAE included the upregulation of pathways related to synaptic activity and neuronal differentiation and downregulation of pathways related to chromosome structure and the cell cycle. Several cell types showed a decrease in Wnt signaling pathways, with several genes related to Wnt signaling altered by PAE in multiple cell types. As Wnt has been shown to promote proliferation and inhibit differentiation at earlier stages in development, the downregulation of Wnt signaling may have resulted in premature neuronal maturation of projection neurons and their intermediate progenitors. Overall, these findings provide further insight into the cell type-specific effects of PAE during early corticogenesis

    OPRM1 Asn40Asp Predicts Response to Naltrexone Treatment: A Haplotype-Based Approach

    Get PDF
    Individualized pharmacotherapy requires identification of genetic variants predictive of treatment response. In OPRM1, Asn40Asp has been reported to be predictive of response to naltrexone treatment. Nevertheless, the in vitro function of the polymorphism remains elusive and over 300 OPRM1 sequence variants have been identified to date. Therefore we used a haplotype-based approach to capture information of other genetic variants that might predict treatment response to naltrexone in the COMBINE Study

    Do motor control genes contribute to interindividual variability in decreased movement in patients with pain?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because excessive reduction in activities after back injury may impair recovery, it is important to understand and address the factors contributing to the variability in motor responses to pain. The current dominant theory is the "fear-avoidance model", in which the some patients' heightened fears of further injury cause them to avoid movement. We propose that in addition to psychological factors, neurochemical variants in the circuits controlling movement and their modification by pain may contribute to this variability. A systematic search of the motor research literature and genetic databases yielded a prioritized list of polymorphic motor control candidate genes. We demonstrate an analytic method that we applied to 14 of these genes in 290 patients with acute sciatica, whose reduction in movement was estimated by items from the Roland-Morris Disability Questionnaire.</p> <p>Results</p> <p>We genotyped a total of 121 single nucleotide polymorphisms (SNPs) in 14 of these genes, which code for the dopamine D2 receptor, GTP cyclohydrolase I, glycine receptor Ξ±1 subunit, GABA-A receptor Ξ±2 subunit, GABA-A receptor Ξ²1 subunit, Ξ±-adrenergic 1C, 2A, and 2C receptors, serotonin 1A and 2A receptors, cannabinoid CB-1 receptor, M1 muscarinic receptor, and the tyrosine hydroxylase, and tachykinin precursor-1 molecules. No SNP showed a significant association with the movement score after a Bonferroni correction for the 14 genes tested. Haplotype analysis of one of the blocks in the GABA-A receptor Ξ²1 subunit showed that a haplotype of 11% frequency was associated with less limitation of movement at a nominal significance level value (p = 0.0025) almost strong enough to correct for testing 22 haplotype blocks.</p> <p>Conclusion</p> <p>If confirmed, the current results may suggest that a common haplotype in the GABA-A Ξ²1 subunit acts like an "endogenous muscle relaxant" in an individual with subacute sciatica. Similar methods might be applied a larger set of genes in animal models and human laboratory and clinical studies to understand the causes and prevention of pain-related reduction in movement.</p

    The rhesus macaque is three times as diverse but more closely equivalent in damaging coding variation as compared to the human

    Full text link
    Abstract Background As a model organism in biomedicine, the rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate. Although a draft genome sequence was completed in 2007, there has been no systematic genome-wide comparison of genetic variation of this species to humans. Comparative analysis of functional and nonfunctional diversity in this highly abundant and adaptable non-human primate could inform its use as a model for human biology, and could reveal how variation in population history and size alters patterns and levels of sequence variation in primates. Results We sequenced the mRNA transcriptome and H3K4me3-marked DNA regions in hippocampus from 14 humans and 14 rhesus macaques. Using equivalent methodology and sampling spaces, we identified 462,802 macaque SNPs, most of which were novel and disproportionately located in the functionally important genomic regions we had targeted in the sequencing. At least one SNP was identified in each of 16,797 annotated macaque genes. Accuracy of macaque SNP identification was conservatively estimated to be >90%. Comparative analyses using SNPs equivalently identified in the two species revealed that rhesus macaque has approximately three times higher SNP density and average nucleotide diversity as compared to the human. Based on this level of diversity, the effective population size of the rhesus macaque is approximately 80,000 which contrasts with an effective population size of less than 10,000 for humans. Across five categories of genomic regions, intergenic regions had the highest SNP density and average nucleotide diversity and CDS (coding sequences) the lowest, in both humans and macaques. Although there are more coding SNPs (cSNPs) per individual in macaques than in humans, the ratio of dN/dS is significantly lower in the macaque. Furthermore, the number of damaging nonsynonymous cSNPs (have damaging effects on protein functions from PolyPhen-2 prediction) in the macaque is more closely equivalent to that of the human. Conclusions This large panel of newly identified macaque SNPs enriched for functionally significant regions considerably expands our knowledge of genetic variation in the rhesus macaque. Comparative analysis reveals that this widespread, highly adaptable species is approximately three times as diverse as the human but more closely equivalent in damaging variation.http://deepblue.lib.umich.edu/bitstream/2027.42/112453/1/12863_2011_Article_1004.pd

    Genetic variation in human NPY expression affects stress response and emotion

    Full text link
    Understanding inter- individual differences in stress response requires the explanation of genetic influences at multiple phenotypic levels, including complex behaviours and the metabolic responses of brain regions to emotional stimuli. Neuropeptide Y ( NPY) is anxiolytic(1,2) and its release is induced by stress(3). NPY is abundantly expressed in regions of the limbic system that are implicated in arousal and in the assignment of emotional valences to stimuli and memories(4-6). Here we show that haplotype- driven NPY expression predicts brain responses to emotional and stress challenges and also inversely correlates with trait anxiety. NPY haplotypes predicted levels of NPY messenger RNA in postmortem brain and lymphoblasts, and levels of plasma NPY. Lower haplotype- driven NPY expression predicted higher emotion- induced activation of the amygdala, as well as diminished resiliency as assessed by pain/ stress- induced activations of endogenous opioid neurotransmission in various brain regions. A single nucleotide polymorphism ( SNP rs16147) located in the promoter region alters NPY expression in vitro and seems to account for more than half of the variation in expression in vivo. These convergent findings are consistent with the function of NPY as an anxiolytic peptide and help to explain inter- individual variation in resiliency to stress, a risk factor for many diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62768/1/nature06858.pd

    An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior

    No full text
    Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2lmRNA, encoding a component of a histone methyltransferase complex. We therefore examined genome-wide changes in trimethylation of histone H3 on Lys4 (H3K4me3), a mark induced by the Ash2l complex associated with increased gene transcription. A large proportion of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4me3. Knockdown of Ash2l or Mef2c abolished nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuated nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimicked nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior

    GABAergic Gene Expression in Postmortem Hippocampus from Alcoholics and Cocaine Addicts; Corresponding Findings in Alcohol-NaΓ―ve P and NP Rats

    Get PDF
    BACKGROUND:By performing identical studies in humans and rats, we attempted to distinguish vulnerability factors for addiction from neurobiological effects of chronic drug exposure. We focused on the GABAergic system within the hippocampus, a brain region that is a constituent of the memory/conditioning neuronal circuitry of addiction that is considered to be important in drug reinforcement behaviors in animals and craving and relapse in humans. METHODOLOGY:Using RNA-Seq we quantified mRNA transcripts in postmortem total hippocampus from alcoholics, cocaine addicts and controls and also from alcohol-naΓ―ve, alcohol preferring (P) and non-preferring (NP) rats selectively bred for extremes of alcohol-seeking behavior that also show a general addictive tendency. A pathway-targeted analysis of 25 GABAergic genes encoding proteins implicated in GABA synthesis, metabolism, synaptic transmission and re-uptake was undertaken. PRINCIPAL FINDINGS:Directionally consistent and biologically plausible overlapping and specific changes were detected: 14/25 of the human genes and 12/25 of the rat genes showed nominally significant differences in gene expression (global p values: 9Γ—10⁻¹⁴, 7Γ—10⁻¹¹ respectively). Principal FDR-corrected findings were that GABBR1 was down-regulated in alcoholics, cocaine addicts and P rats with congruent findings in NSF, implicated in GABAB signaling efficacy, potentially resulting in increased synaptic GABA. GABRG2, encoding the gamma2 subunit required for postsynaptic clustering of GABAA receptors together with GPHN, encoding the associated scaffolding protein gephryin, were both down-regulated in alcoholics and cocaine addicts but were both up-regulated in P rats. There were also expression changes specific to cocaine addicts (GAD1, GAD2), alcoholics (GABRA2) and P rats (ABAT, GABRG3). CONCLUSIONS/SIGNIFICANCE:Our study confirms the involvement of the GABAergic system in alcoholism but also reveals a hippocampal GABA input in cocaine addiction. Congruent findings in human addicts and P rats provide clues to predisposing factors for alcohol and drug addiction. Finally, the results of this study have therapeutic implications

    Refinement of Light-Responsive Transcript Lists Using Rice Oligonucleotide Arrays: Evaluation of Gene-Redundancy

    Get PDF
    Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics

    Identification of Mimotope Peptides Which Bind to the Mycotoxin Deoxynivalenol-Specific Monoclonal Antibody

    No full text
    Monoclonal antibody 6F5 (mAb 6F5), which recognizes the mycotoxin deoxynivalenol (DON) (vomitoxin), was used to select for peptides that mimic the mycotoxin by employing a library of filamentous phages that have random 7-mer peptides on their surfaces. Two phage clones selected from the random peptide phage-displayed library coded for the amino acid sequences SWGPFPF and SWGPLPF. These clones were designated DONPEP.2 and DONPEP.12, respectively. The results of a competitive enzyme-linked immunosorbent assay (ELISA) suggested that the two phage displayed peptides bound to mAb 6F5 specifically at the DON binding site. The amino acid sequence of DONPEP.2 plus a structurally flexible linker at the C terminus (SWGPFPFGGGSC) was synthesized and tested to determine its ability to bind to mAb 6F5. This synthetic peptide (designated peptide C430) and DON competed with each other for mAb 6F5 binding. When translationally fused with bacterial alkaline phosphatase, DONPEP.2 bound specifically to mAb 6F5, while the fusion protein retained alkaline phosphatase activity. The potential of using DONPEP.2 as an immunochemical reagent in a DON immunoassay was evaluated with a DON-spiked wheat extract. When peptide C430 was conjugated to bovine serum albumin, it elicited antibody specific to peptide C430 but not to DON in both mice and rabbits. In an in vitro translation system containing rabbit reticulocyte lysate, synthetic peptide C430 did not inhibit protein synthesis but did show antagonism toward DON-induced protein synthesis inhibition. These data suggest that the peptides selected in this study bind to mAb 6F5 and that peptide C430 binds to ribosomes at the same sites as DON
    • …
    corecore