20,269 research outputs found
Monitoring luminous yellow massive stars in M33: new yellow hypergiant candidates
The evolution of massive stars surviving the red supergiant (RSG) stage
remains unexplored due to the rarity of such objects. The yellow hypergiants
(YHGs) appear to be the warm counterparts of post-RSG classes located near the
Humphreys-Davidson upper luminosity limit, which are characterized by
atmospheric instability and high mass-loss rates. We aim to increase the number
of YHGs in M33 and thus to contribute to a better understanding of the
pre-supernova evolution of massive stars. Optical spectroscopy of five
dust-enshrouded YSGs selected from mid-IR criteria was obtained with the goal
of detecting evidence of extensive atmospheres. We also analyzed BVI photometry
for 21 of the most luminous YSGs in M33 to identify changes in the spectral
type. To explore the properties of circumstellar dust, we performed SED-fitting
of multi-band photometry of the 21 YSGs. We find three luminous YSGs in our
sample to be YHG candidates, as they are surrounded by hot dust and are
enshrouded within extended, cold dusty envelopes. Our spectroscopy of star 2
shows emission of more than one H component, as well as emission of
CaII, implying an extended atmospheric structure. In addition, the long-term
monitoring of the star reveals a dimming in the visual light curve of amplitude
larger than 0.5 mag that caused an apparent drop in the temperature that
exceeded 500 K. We suggest the observed variability to be analogous to that of
the Galactic YHG Cas. Five less luminous YSGs are suggested as post-RSG
candidates showing evidence of hot or/and cool dust emission. We demonstrate
that mid-IR photometry, combined with optical spectroscopy and time-series
photometry, provide a robust method for identifying candidate YHGs. Future
discovery of YHGs in Local Group galaxies is critical for the study of the late
evolution of intermediate-mass massive stars.Comment: 24 pages, 12 figures, 7 Tables. A&A in pres
Absorption Cross Sections of NH_3, NH_2D, NHD_2, and ND_3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation
Cross sections for photoabsorption of NH_3, NH_2D, NHD_2, and ND_3 in the spectral region 140-220 nm were determined at ~298 K using synchrotron radiation. Absorption spectra of NH_2D and NHD_2 were deduced from spectra of mixtures of NH_3 and ND_3, of which the equilibrium concentrations for all four isotopologues obey statistical distributions. Cross sections of NH_2D, NHD_2, and ND_3 are new. Oscillator strengths, an integration of absorption cross sections over the spectral lines, for both A â X and B â X systems of NH_3 agree satisfactorily with previous reports; values for NH_2D, NHD_2, and ND_3 agree with quantum chemical predictions. The photolysis of NH_3 provides a major source of reactive hydrogen in the lower stratosphere and upper troposphere of giant planets such as Jupiter. Incorporating the measured photoabsorption cross sections of NH_3 and NH_2D into the Caltech/JPL photochemical diffusive model for the atmosphere of Jupiter, we find that the photolysis efficiency of NH_2D is lower than that of NH_3 by as much as 30%. The D/H ratio in NH_2D/NH_3 for tracing the microphysics in the troposphere of Jupiter is also discussed
Absorption cross sections of HCl and DCl at 135-232 nanometers: implications for photodissociation on Venus
Cross sections for photoabsorption of HCl and DCl are determined in the spectral region of 135-232 nm using radiation from a synchrotron light source. At wavelengths near the onset of absorption (λ > 200 nm), cross sections of HCl are approximately 5-10 times larger than those of DCl. These data are used to calculate rates of photodissociation of HCl and DCl in the Venusian atmosphere. For the entire wavelength region measured, the rate of photodissociation of DCl is only 16% that of HCl. The difference in rates of photodissociation contributes to the exceptionally large [D]/[H] ratio of the Venusian atmosphere
E2F4 cooperates with pRB in the development of extra-embryonic tissues
August 1, 2010The retinoblastoma gene, RB-1, was the first identified tumor suppressor. Rb[superscript â/â] mice die in mid-gestation with defects in proliferation, differentiation and apoptosis. The activating E2F transcription factors, E2F1â3, contribute to these embryonic defects, indicating that they are key downstream targets of the retinoblastoma protein, pRB. E2F4 is the major pRB-associated E2F in vivo, yet its role in Rb[superscript â/â] embryos is unknown. Here we establish that E2f4 deficiency reduced the lifespan of Rb[superscript â/â] embryos by exacerbating the Rb mutant placental defect. We further show that this reflects the accumulation of trophectoderm-like cells in both Rb and Rb;E2f4 mutant placentas. Thus, Rb and E2f4 play cooperative roles in placental development. We used a conditional mouse model to allow Rb[superscript â/â];E2f4[superscript â/â] embryos to develop in the presence of Rb wild-type placentas. Under these conditions, Rb[superscript â/â];E2f4[superscript â/â] mutants survived to birth. These Rb[superscript â/â];E2f4[superscript â/â] embryos exhibited all of the defects characteristic of the Rb and E2f4 single mutants and had no novel defects. Taken together, our data show that pRB and E2F4 cooperate in placental development, but play largely non-overlapping roles in the development of many embryonic tissues.David H. Koch Institute for Integrative Cancer Research at MIT. Pearl Staller Graduate Student FundNational Institutes of Health (U.S.) (Grant GM53204)National Institutes of Health (U.S.) (Grant CA121921
Effect of Static Extraction TIME on Extraction Efficiencies Using On-line Supercritical Fluid Extraction-High Performance Liquid Chromatography for Lipoquinone Analysis in Activated Sludge
Analysis of microbial community is important for monitoring the performance of biological processes. One of the most simple, quantitative and high reproducible method for analysis of the microbial community is lipoquinone profile method. Lipoquinone is constituent of bacterial plasma membrane that is essential for electron transporter. Lipoquinone could be used as a biomarker to analyze the microbial community because in general one species or genus of bacteria has one dominant type of lipoquinone, thus any changes in the lipoquinone profile would reflect the changes in the microbial community. The method for lipoquinone determination in environmental sample is direct extraction using organic solvent and analysis using chromatography system. Since the method is tedious and uses a large amount of organic solvent, the on-line supercritical fluid extraction-high performance liquid chromatography (on-line SFE-HPLC) has been developed to simplify the method, and was successful determine lipoquinone compounds in activated sludges. The effect of static extraction time on extraction efficiencies of the lipoquinone was investigated in order to eliminate the water pump and methanol pump in the previous system. The CO2 was used as an extraction solvent. The 0.1 g of freeze dried activated sludge was placed into a 1 mL stainless steel extraction vessel and methanol was spiked into the sludge as a modifier. The SFE was connected to HPLC by using trapping column as an interface for collecting lipoquinone extracted from the sludge. The static extraction time was conducted by allowed the matrix to immersed in CO2 and methanol. When the static extraction time finished, the dynamic extraction time was carried out. The extracted and trapped lipoquinone then directly transferred to HPLC system for determination. In this study, the effect of static, dynamic extraction time and volume of spiked methanol were optimized using simplified on-line SFEHPLC for lipoquinone analysis. The best results in terms of extraction yield were obtained at 25 MPa, 45°C, 10 min static extraction time with 500 ”L methanol spiked, and 25 min dynamic extraction time with 0.9 mL min-1 CO2 flow rate. It was concluded that the developed method could simplify the online SFE-HPLC system of lipoquinone determination which is useful for a rapid and routine analysis of microbial community in activated sludge
Multi-Receiver Quantum Dense Coding with Non-Symmetric Quantum Channel
A two-receiver quantum dense coding scheme and an -receiver quantum dense
coding scheme, in the case of non-symmetric Hilbert spaces of the particles of
the quantum channel, are investigated in this paper. A sender can send his
messages to many receivers simultaneously. The scheme can be applied to quantum
secret sharing and controlled quantum dense coding.Comment: To appear in Journal of the Korean Physical Societ
Photon polarisation entanglement from distant dipole sources
It is commonly believed that photon polarisation entanglement can only be
obtained via pair creation within the same source or via postselective
measurements on photons that overlapped within their coherence time inside a
linear optics setup. In contrast to this, we show here that polarisation
entanglement can also be produced by distant single photon sources in free
space and without the photons ever having to meet, if the detection of a photon
does not reveal its origin -- the which way information. In the case of two
sources, the entanglement arises under the condition of two emissions in
certain spatial directions and leaves the dipoles in a maximally entangled
state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J.
Phys.
Macroscopic Quantum Tunnelling in Rotating Bose-Einstein Condensates
In this paper we investigate the macroscopic quantum tunnelling and the phase
coherence property of the rotating Bose-Einstein condensates in both static and
dynamic cases by using the mean field theory.Comment: 10 pages, 1 figure, submitted to Phys.Rev.
The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena
The Internet is the most complex system ever created in human history.
Therefore, its dynamics and traffic unsurprisingly take on a rich variety of
complex dynamics, self-organization, and other phenomena that have been
researched for years. This paper is a review of the complex dynamics of
Internet traffic. Departing from normal treatises, we will take a view from
both the network engineering and physics perspectives showing the strengths and
weaknesses as well as insights of both. In addition, many less covered
phenomena such as traffic oscillations, large-scale effects of worm traffic,
and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex
System
- âŠ