50,677 research outputs found
Exclusion Statistics in a trapped two-dimensional Bose gas
We study the statistical mechanics of a two-dimensional gas with a repulsive
delta function interaction, using a mean field approximation. By a direct
counting of states we establish that this model obeys exclusion statistics and
is equivalent to an ideal exclusion statistics gas.Comment: 3 pages; minor changes in notation; typos correcte
Vapor-liquid phase separator studies
A study of porous plug use for vapor-liquid phase seperation in spaceborne cryogenic systems was conducted. The three main topics addressed were: (1) the usefulness of porous media in designs that call for variable areas and flow rates; (2) the possibility of prediction of main parameters of porous plugs for a given material; and (3) prediction of all parameters of the plug, including secondary parameters
Hidden Order Transition in URu2Si2 and the Emergence of a Coherent Kondo Lattice
Using a large-N approach, we demonstrate that the differential conductance
and quasi-particle interference pattern measured in recent scanning tunneling
spectroscopy experiments (A.R. Schmidt et al. Nature 465, 570 (2010); P.
Aynajian et al., PNAS 107, 10383 (2010)) in URu2Si2 are consistent with the
emergence of a coherent Kondo lattice below its hidden order transition (HOT).
Its formation is driven by a significant increase in the quasi-particle
lifetime, which could arise from the emergence of a yet unknown order parameter
at the HOT.Comment: 5 pages, 3 figure
Scalar wormholes in cosmological setting and their instability
We construct exact nonstatic nonhomogeneous spherically symmetric solutions
in the theory of gravity with a scalar field possessing the exponential
potential. The solution of particular interest corresponds to the scalar field
with negative kinetic energy, i.e. a ghost, and represents two asymptotically
homogeneous spatially flat universes connected by a throat. We interpret this
solution as a wormhole in cosmological setting. Both the universes and the
wormhole throat are simultaneously expanding with acceleration. The character
of expansion qualitatively depends on the wormhole's mass . For the
expansion goes exponentially, so that the corresponding spacetime configuration
represents two de Sitter universes joining by the throat. For the
expansion has the power character, so that one has the inflating wormhole
connecting two homogeneous spatially flat universes expanding according to the
power law into the final singularity. The stability analysis of the non-static
wormholes reveals their instability against linear spherically symmetric
perturbations.Comment: REVTeX4, 11 pages, submitted to PR
Modeling Klein tunneling and caustics of electron waves in graphene
We employ the tight-binding propagation method to study Klein tunneling and
quantum interference in large graphene systems. With this efficient numerical
scheme, we model the propagation of a wave packet through a potential barrier
and determine the tunneling probability for different incidence angles. We
consider both sharp and smooth potential barriers in n-p-n and n-n' junctions
and find good agreement with analytical and semiclassical predictions. When we
go outside the Dirac regime, we observe that sharp n-p junctions no longer show
Klein tunneling because of intervalley scattering. However, this effect can be
suppressed by considering a smooth potential. Klein tunneling holds for
potentials changing on the scale much larger than the interatomic distance.
When the energies of both the electrons and holes are above the Van Hove
singularity, we observe total reflection for both sharp and smooth potential
barriers. Furthermore, we consider caustic formation by a two-dimensional
Gaussian potential. For sufficiently broad potentials we find a good agreement
between the simulated wave density and the classical electron trajectories.Comment: 14 pages, 12 figure
Separator plugs for liquid helium
Work performed during Summer 1984 (from June to Sept. 30) in the area of porous media for use in low temperature applications is discussed. Recent applications are in the area of vapor - liquid phase separation, pumping based on the fountain effect and related subsystems. Areas of potential applications of the latter are outlined in supplementary work. Experimental data have been developed. The linear equations of the two-fluid model are inspected critically in the light of forced convection evidence reported recently. It is emphasized that the Darcy permeability is a unique throughput quantity in the porous media application areas whose use will permit meaningful comparisons of data not only in one lab but also within a group of labs doing porous plug studies
Proper Matter Collineations of Plane Symmetric Spacetimes
We investigate matter collineations of plane symmetric spacetimes when the
energy-momentum tensor is degenerate. There exists three interesting cases
where the group of matter collineations is finite-dimensional. The matter
collineations in these cases are either four, six or ten in which four are
isometries and the rest are proper.Comment: 10 pages, LaTex, accepted for publication in Modern Physics Letters
- …