154 research outputs found

    Determining the core radio luminosity function of radio AGNs via copula

    Get PDF
    The radio luminosity functions (RLFs) of active galactic nuclei (AGNs) are traditionally measured based on total emission, which doesn't reflect the current activity of the central black hole. The increasing interest in compact radio cores of AGNs requires determination of the RLF based on core emission (i.e., core RLF). In this work we have established a large sample (totaling 1207) of radio-loud AGNs, mainly consisting of radio galaxies (RGs) and steep-spectrum radio quasars (SSRQs). Based on the sample, we explore the relationship between core luminosity (LcL_c) and total luminosity (LtL_t) via a powerful statistical tool called "Copula". The conditional probability distribution p(logLclogLt)p(\log L_{c} \mid \log L_{t}) is obtained. We derive the core RLF as a convolution of p(logLclogLt)p(\log L_{c} \mid \log L_{t}) with the total RLF which was determined by previous work. We relate the separate RG and SSRQ core RLFs via a relativistic beaming model and find that SSRQs have an average Lorentz factor of γ=9.842.50+3.61\gamma=9.84_{-2.50}^{+3.61}, and that most are seen within 8θ458^{\circ} \lesssim \theta \lesssim 45^{\circ} of the jet axis. Compared with the total RLF which is mainly contributed by extended emission, the core RLF shows a very weak luminosity-dependent evolution, with the number density peaking around z0.8z\thicksim 0.8 for all luminosities. Differences between core and total RLFs can be explained in a framework involving a combination of density and luminosity evolutions where the cores have significantly weaker luminosity evolution than the extended emission.Comment: Accepted for publication in the ApJ

    ERSVC: An Efficient Routing Scheme for Satellite Constellation Adapting Vector Composition

    Get PDF
    AbstractCompared with GEO and MEO satellites, LEO satellite constellation is able to provide low-latency, broadband communications which is difficult to be provided by the GEO or MEO satellites. However, one of the challenges in LEO constellation is the development of an efficient and specialized routing scheme. This paper takes transmission rate and data transmission time into consideration, and proposes ERSVC, an efficient routing scheme for satellite constellation adapting vector composition. ERSVC reduces routing table computation complexity, and saves restricted satellite resources. By adapting vector composition method, the amount of data flowing into satellite constellation is maximized while the data traffic is well controlled. Correlative and comprehensive simulation indicates that ERSVC is superior to existing schemes for LEO satellite constellation, especially in balancing data flow

    Complex-Coefficient Frequency Domain Stability Analysis Method for a Class of Cross-Coupled Antisymmetrical Systems and Its Extension in MSR Systems

    Get PDF
    This paper develops a complex-coefficient frequency domain stability analysis method for a class of cross-coupled two-dimensional antisymmetrical systems, which can greatly simplify the stability analysis of the multiple-input multiple-output (MIMO) system. Through variable reconstruction, the multiple-input multiple-output (MIMO) system is converted into a single-input single-output (SISO) system with complex coefficients. The pole locations law of the closed-loop system after the variable reconstruction has been revealed, and the controllability as well as observability of the controlled plants before and after the variable reconstruction has been studied too, and then the classical Nyquist stability criterion is extended to the complex-coefficient frequency domain. Combined with the rigid magnetically suspended rotor (MSR) system with heavy gyroscopic effects, corresponding stability criterion has been further developed. Compared with the existing methods, the developed criterion for the rigid MSR system not only accurately predicts the absolute stability of the different whirling modes, but also directly demonstrates their relative stability, which greatly simplifies the analysis, design, and debugging of the control system

    Eight-Year Surveillance of Antimicrobial Resistance among Enterobacter Cloacae Isolated in the First Bethune Hospital

    Get PDF
    AbstractThis study was to investigate the antimicrobial resistance of Enterobacter cloacae isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 683 strains of Enterobacter cloacae were collected from sputum 410 (60.0%), secretions and pus 105 (15.4%), urine 69 (10.1%) during the past 8 years. No Enterobacter cloacae was resistant to imipenem and meropenem in the First Bethune Hospital. The antimicrobial resistance of Enterobacter cloacae had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from b eing transmitted
    corecore