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Abstract

The radio luminosity functions (RLFs) of active galactic nuclei (AGNs) are traditionally measured based on total
emission, which does not reflect the current activity of the central black hole. The increasing interest in compact
radio cores of AGNs motivates determination of the RLF based on core emission (i.e., core RLF). In this work we
have established a large sample (totaling 1207) of radio-loud AGNs, mainly consisting of radio galaxies (RGs) and
steep-spectrum radio quasars (SSRQs). Based on the sample, we explore the relationship between core luminosity
(Lc) and total luminosity (Lt) via a powerful statistical tool called “Copula.” The conditional probability distribution

( ∣ )p L Llog logc t is obtained. We derive the core RLF as a convolution of ( ∣ )p L Llog logc t with the total RLF that
was determined by previous work. We relate the separate RG and SSRQ core RLFs via a relativistic beaming
model and find that SSRQs have an average Lorentz factor of g = -

+9.84 2.50
3.61, and that most are seen within

8°θ45° of the jet axis. Compared with the total RLF, which is mainly contributed by extended emission, the
core RLF shows a very weak luminosity-dependent evolution, with the number density peaking around z∼0.8 for
all luminosities. Differences between core and total RLFs can be explained in a framework involving a
combination of density and luminosity evolutions where the cores have significantly weaker luminosity evolution
than the extended emission.

Key words: galaxies: active – galaxies: luminosity function, mass function – radio continuum: galaxies

Supporting material: machine-readable table

1. Introduction

Observations have suggested that radio-loud active galactic
nuclei (AGNs) play an important role in feedback, and thus
have a significant impact on galaxy evolution (e.g., Bower et al.
2006; Croton et al. 2006; Fabian 2012; McAlpine et al. 2013).
This type of AGN, which at high powers includes radio
galaxies (RGs) and quasars, displays double lobes connected to
a “core” by jets on scales of ∼100 kpc. In unification schemes,
quasars are the beamed end-on counterparts of RGs. An RG
can be generically described by a three-component structure of
core, jets, and lobes. The core, which is traditionally defined as
a component unresolved on arcsecond scales and with a flat
radio spectrum (e.g., Hardcastle et al. 1998; Mullin et al. 2008),
is one of the most important structures in radio-loud AGNs, as
it marks where the active nucleus propels energy and matter to
extended lobes via jets. The standard interpretation that the core
is the optically thick base of the jet (e.g., Blandford &
Königl 1979), has been confirmed by VLBI maps (e.g.,
Antonucci 2011).

The radio core emission is generally thought to be self-
absorbed nonthermal synchrotron emission originating in the
inner jet (e.g., Verdoes Kleijn et al. 2002; Kharb &
Shastri 2004; Kim et al. 2018). It is directly associated with
processes in the central engine, and related to accretion and
triggering of the supermassive black hole (SMBH). At low
radio frequencies, the core is often only about 0.001 times the
flux density of the total source. The core and jets are affected
by relativistic beaming that causes orientation dependencies.
The lobes, which display extended structures and are composed
of old plasma, dominate the low-frequency emission of the

source and are not affected by relativistic effects, but do not
relate directly to current processes in the central engine.
The radio luminosity function (RLF) is an important

statistical tool used to study the evolution of radio sources.
Up to now most research on the RLFs of radio-loud AGNs has
been based on their total radio emission (i.e., total RLF, e.g.,
Dunlop & Peacock 1990; Willott et al. 2001; McAlpine &
Jarvis 2011; Yuan et al. 2016). In principle, we can also
determine RLFs based on core emission (i.e., core RLFs), and
can expect that the core RLF would be more closely associated
with the fundamental physical processes creating and main-
taining jets than the total RLF, which is strongly affected by
time-averaged properties and the environment.
The motivation of this work is based on the importance of

the core RLF. It can be important in the following ways. First,
the shape and evolution of the core RLF provide more rigorous
constraints on the nature of the instantaneous radio activity in
massive galaxies. Since core radio activity arises within a very
small (<1 pc) region (e.g., Sadler et al. 1995), the difference
between radio-loud and radio-weak AGNs is established
already on the parsec scale (Falcke & Biermann 1995). Second,
the core RLF helps us to understand the accretion process onto
SMBHs more directly than that for the total RLF: the core’s
radiation is closely linked with the properties of the SMBH,
while environmental effects play an important role for the
large-scale lobes. For example, the observed relation between
BH mass and radio and X-ray luminosity (known as the
fundamental plane of active BHs) that defines the physical state
of low kinetic mode objects (see Merloni & Heinz 2008) is
based on the observed (5 GHz) radio core emission (e.g.,
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Hardcastle et al. 2009), not on the extended one. Third,
galaxies have weak radio emission on extended scales that is
unrelated to the AGN-related emission (i.e., starburst related
instead), and total RLFs run into the problem that they start
picking up such objects at low luminosities and so are no
longer measuring AGN characteristics. That is less of a
problem for a core RLF. Fourth, the increasing interest in
compact radio cores with the forthcoming advent of the Square
Kilometre Array (SKA) requires determination of the core
RLF. The presence of a compact radio core in the nuclei of
galaxies is usually believed to be a clear sign of BH activity
(e.g., Baldi et al. 2018). In view of this, Falcke et al. (2004)
argued that the radio emission from compact cores can be used
effectively for large radio surveys with the SKA, and these
cores can be used to study the evolution of BHs throughout the
universe and even to detect the very first generation of BHs.

Interest in the cores of RGs is reflected in studies at radio
frequencies 10GHz (e.g., Whittam et al. 2013; Sadler et al.
2014; Whittam et al. 2015) based on, for example, the Tenth
Cambridge (10 C) Survey (AMI Consortium et al. 2011) and the
Australia Telescope 20GHz (AT20G) survey (Murphy et al.
2010). For high-frequency selected sources, the radio emission
arises mainly from the core (e.g., Sadler et al. 2006), and many
sources lack extended radio emission and are analogous to FR 0s
(e.g., Baldi et al. 2015). These recent studies have suggested that
the radio core is a key component to understanding the faint source
population at high-frequency (also see Whittam et al. 2017).

Up to now, observed data on core flux densities have been
abundant, but establishing a complete core sample with good
control over the selection function is still rather difficult. On
one hand, at low frequencies radio surveys of AGN are selected
based on total emission but not on core emission. Obviously,
completeness in total flux is not the same thing as completeness
in core flux. On the other hand, at high frequencies, a flat-
spectrum core is dominant, so flux-limited complete samples at
high frequencies are biased toward quasars and sources with
bright beamed core emission. Therefore, the relativistic
beaming effect creates further challenges for the estimation of
the core RLF. Due to the above factors, a comprehensive and
reliable description of the core RLF is still absent.

To estimate the core RLF, some more sophisticated
statistical approach should be adopted, in which the problem
of sample completeness, as well as the relativistic beaming of
core emission, are taken into account. In regard to beaming, our
plan is to use a steep-radio-spectrum source sample only, which
will be discussed in Section 2. On the issue of the sample
completeness problem, coincidentally, the difficulty in estimat-
ing the core RLF is very similar to that of determining the black
hole mass functions (BHMFs). The BHMF is derived by
applying the existing relations between MBH and host galaxy
properties to galaxy luminosity or velocity functions (e.g.,
Marconi et al. 2004). Similarly, we can derive the core RLF by
applying a relation between core and total radio luminosities to
the total RLF, which is well determined. To give a
mathematically rigorous description of the core–total relation,
we resort to a special statistical tool called “Copula,” which is
developed by modern statistics to describe the dependence
between random variables. In recent years, copula has been
widely used in various areas such as finance and hydrology, but
its application in astronomy or astrophysics is limited (Benabed
et al. 2009; Jiang et al. 2009; Koen 2009; Scherrer et al. 2010;
Takeuchi 2010; Koen & Bere 2017).

The paper is organized as follows. Section 2 describes the
properties of the sample. In Section 3, the core to total radio
luminosity correlation is analyzed. Section 4 introduces the
concept of copula, and presents the correlation described by
copula.7 The core RLF is derived in Section 5. Section 6 discuss
the difference between core and total RLFs. The main results of
the work are summarized in Section 7. Throughout the paper, we
adopt a lambda cold dark matter cosmology with the parameters
Ωm=0.27, ΩΛ=0.73, and H0=71 km s−1 Mpc−1.

2. The Sample

Radio-loud quasars are traditionally classified into two main
categories: steep spectrum (SSRQs α>0.5, assuming Sν∝ν−α)
and flat spectrum (FSRQs, α<0.5). According to unification
schemes (e.g., Antonucci 1993; Urry & Padovani 1995), the
appearance of the steep/flat-spectrum dichotomy depends
primarily on axis orientation relative to the observer, while
intrinsic properties are similar. Steep-spectrum sources include
RGs and SSRQs, and are lobe-dominated and inclined at larger
angles to the line of sight compared with their flat-spectrum
counterparts. Due to the relatively larger viewing angles, the radio
cores in steep-spectrum sources are much less affected by
Doppler-boosting compared with those in flat-spectrum sources.
Therefore, we will use a steep-spectrum source sample only to
determine the core RLF. This choice will lead to missing many
cores of flat-spectrum sources, but the bias can be quantified as
long as the unification scheme of AGNs is true and the inclination
angles of radio sources are randomly distributed. The core RLF
derived from the steep-spectrum sources would then be different
from the intrinsic core RLF only in normalization factor, but not
in shape (e.g., Liu & Zhang 2007).

2.1. The Sample Composition

This work involves two samples, referred to as Samples I and
II. Sample I is a complete “coherent” (e.g., Avni & Bahcall 1980)
sample consisting of four subsamples with different flux limits. It
was established by our previous work (Yuan & Wang 2012), and
was used to determine the total RLF by Yuan et al. (2017,
hereafter Y17). Y17’s total RLF is the important base for this
work. Sample II is the base to explore the relationship between
core and total luminosities via copula. It inherits all the sources
(totaling 631) that have both total and core flux density
measurements from Sample I. It also absorbs the 73 sources
from the GRG (giant RG) sample by Lara et al. (2004). Through
an extensive literature search we collect 503 additional sources
and put them into Sample II. A list of these 503 sources can be
found in Appendix A. Sample II thus includes 1207 radio-loud
AGNs that mainly consist of RGs and SSRQs. In statistics, a
simple random sample is a subset of individuals (a sample)
chosen from a larger set (a population). Each individual is chosen
randomly and entirely by chance (Yates et al. 2008). The data of
Sample II are collected from various sources. It can be treated
approximately as a simple random sample.

2.2. Sample II

All the sources in Sample II have radio core flux densities at
5 GHz, total radio flux densities at 408MHz or 1.4 GHz, and

7 A computer routine for performing the copula analysis in this work is
available upon request from Z. Yuan. A general-purpose copula analysis code
will be made available on https://github.com/yuanzunli.
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redshifts. The source composition, and the numbers of sources
for which parameters of interest are measured, are shown in
Table 1. In the table, Sc5.0 represents the radio core flux density
at 5 GHz and z is redshift. St0.408 and St1.4 represent the total
radio flux densities at 408MHz and 1.4 GHz, respectively. αt is
the spectral index near 408MHz for total emission, and αc

represents the core spectral index near 5 GHz. Note that the 73
sources from Lara et al. (2004) only have total radio flux
densities measured at 1.4 GHz. We will apply spectral indices
to them using a Monte Carlo method (see Section 3.3 for
detail), and then convert St1400 to St408 so that for all the
sources, a monochromatic luminosity at 5 GHz for cores, and
408MHz for total emission, can be calculated. Throughout the
paper, when it comes to the core and total luminosities (denoted
as Lc and Lt respectively), we always mean the 5 GHz and
408MHz monochromatic luminosities, respectively.

3. Data Analysis

3.1. Mathematical Notation

We use an italic capital letter to denote a random variable;
e.g., Lc is the core luminosity or its value, while LC denotes the
random variable. We use the common statistical notation that
an estimate of a quantity is denoted by placing a “hat” above it;
e.g., q̂ is an estimate of the true value of the parameter θ. We
use a non-parametric method, called kernel density estimation
(KDE), to estimate the probability density function (PDF) of a
random variable. Let (x1, x2,L, xn) be a univariate independent
sample drawn from some distribution with an unknown density
f (x). The KDE of this function f is given by

å@ =
-

=

⎜ ⎟⎛
⎝

⎞
⎠( ) ˆ ( ) ( )f x f x

nh
K

x x

h

1
, 1h

i

n
i

1

where K is the kernel (a non-negative function that integrates to
one), and h>0 is a smoothing parameter called the
bandwidth. The normal kernel is often used, which means
taking K(x) as the standard normal density function. The
bandwidth of the kernel is a free parameter that exhibits a
strong influence on the resulting estimate. We follow the
method of Botev et al. (2010) to chose an optimal h.

3.2. The Spectral Index Distribution

The distributions of spectral indices for radio core and total
emission are shown in Figure 1. The black thick solid and black
dotted curves represent the core spectral indices of RGs and
SSRQs, respectively. These curves are plotted based on the
KDE. We note that the two curves have similar means and
standard deviations. In Figure 1, the black dashed curve shows
the Gaussian fit for the RG+SSRQ core spectral indices. The
spectral index distributions of total emission for RGs (cyan
thick solid curve) and SSRQs (blue dashed curve) are even
more similar. The red dashed curve shows the Gaussian fit for
the RG+SSRQ total spectral indices. The mean and standard

deviation of Gaussian fits for the core and total spectral indices
are given in Table 2.

3.3. Dealing with the Spectral Index Incompleteness

In our RG sample, 9.3% of the sources do not have a total
spectral index, and 48.3% of the sources do not have a core
spectral index. For the SSRQ sample, the two percentages are
0.66% and 49%, respectively. For the sources without spectral
indices, we assume the spectral indices follow Gaussian
distributions (with means and sigmas given in Table 4), and
assign random spectral indices to them with a Monte Carlo
method. We create 10,000 simulated samples of the 752 RGs
and 455 SSRQs, in which the sources with total spectral
indexes less than 0.4 (e.g., Chhetri et al. 2012) are excluded
from the analysis. The minimum spectral index criterion means
statistically that all the sources entering the analysis are lobe-
dominated. In the following sections, we will introduce the
analysis process, which is done independently for each
simulation. The final result is built as the average of the
results, and its uncertainty takes into account the spread of all
the Monte Carlo results (also see Ajello et al. 2014).

3.4. The Core–Total Radio Luminosity Correlation

Note that there is a correlation between the core and total
radio luminosities in radio AGNs (e.g., Giovannini et al. 1988;
Zirbel & Baum 1995; Lara et al. 2004; Liu & Zhang 2002). In
Figure 2, the core luminosity versus the total luminosity for our
sample is plotted, with the RGs and SSRQs being shown as
black squares and red stars, respectively. Statistically, the core
and total radio luminosities can be regarded as random
variables LC and LT. The Lc−Lt correlation means that a
dependence exists between LC and LT. However, caution must
be taken when treating the Lc−Lt correlation, because both LC
and LT may strongly correlate with redshift and this could result

Table 1
Completeness of the Data

Ident. z Sc5.0 St0.408 St1.4 αt αc Total

RGs 752 752 682 70 682 388 752
quasars 455 455 452 3 452 232 455

Figure 1. Distributions of the core and total spectral indices; the meaning of
each curve is explained in Section 3.2.

Table 2
Gaussian Fits to the Spectral Index Distribution

RG+SSRQ Core RG+SSRQ Total

Mean 0.001 0.785
Sigma 0.397 0.246
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in a spurious luminosity correlation (e.g., Padovani 1992). The
proper way of dealing with the problem is to examine the
Lc−Lt correlation and eliminate the effect of redshift, i.e., via
a partial correlation analysis (e.g., Ghirlanda et al. 2011;
Inoue 2011, see Appendix B for details). This is performed for
our Monte Carlo simulated samples. We calculate that the
average partial correlation coefficients and p-values are 0.289
and 1.002×10−14 for RGs, and 0.232 and 3.910×10−6 for
SSRQs, respectively. Thus, the partial correlation analysis
suggests that the Lc−Lt correlation is genuine.

Traditionally, the LC−LT dependence was assumed to be
linear in logarithmic space. For example, Zirbel & Baum
(1995) found = ´  + ( ) ( )L Llog log 0.56 0.04 9.0 1.0c t
for RGs. Based on high-quality data of the core flux density
observed with VLBI, Giovannini et al. (2001) found

= ´  + ( ) ( )L Llog log 0.62 0.04 7.6 1.1c t for their RG
sample. These are very similar to our result that the linear fit is

= ´  + ( ) ( )L Llog log 0.63 0.02 7.34 0.48c t for RGs
(the magenta dashed line in Figure 2). However, from the
perspective of statistics, the linear correlation does not rest on a
strong mathematical foundation. In the modern field of
statistics, scientists have developed a special statistical tool
called “Copula” to describe the dependence between random
variables. Besides the linear dependence, we can capture the
nonlinear, asymmetric and tail dependence between variables
by copula functions.

4. Copula

4.1. A Brief Introduction

Briefly speaking, copulas are functions that join or “couple”
multivariate distribution functions to their one-dimensional
marginal distribution functions (Nelson 2006). According to
Sklar’s theorem, let H be a joint distribution function with
marginal distribution functions F and G; if F and G are
continuous, then there exists a unique copula C such that

=( ) ( ( ) ( )) ( )H x y C F x G y, , . 2

Let un=F(xn) and vn=G(yn), n=1, 2, KN. un and vn obey
the uniform distribution on [0, 1]. Hence, a copula C(u, v) can
be regarded as the joint distribution of random vectors (U,V )
whose one-dimensional margins are uniform distributions on
[0, 1] (Nelson 1999). Concerning rigorous definition and
detailed introduction of copula, we refer the interested reader to
Nelson (2006).
As a joint distribution function, H not only carries the

information on the marginal distribution of each variable, but
also implies the dependence properties between variables. The
main appeal of Equation (2) is that by using copulas one can
model the dependence structure and the marginal distributions
separately. All the information on the dependence between
variables is carried by the copula. From Equation (2), the joint
probability density function h(x, y) can be written as

=( ) ( ( ) ( )) ( ) ( ) ( )h x y c F x G y f x g y, , , 3

where f (x) and g(y) are the marginal PDFs, and c(u, v) is given
by

=
¶
¶ ¶
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,
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2

The conditional probability density function of Y given the
occurrence of the value x of X can be written as

= º =( ∣ ) ( )
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f x
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Copulas consists of many families, of which the elliptical
and Archimedean Copulas are most common. For example, the
normal copula is an elliptical copula given by
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where Φ−1 is the inverse of the standard normal distribution
function and ρ, the linear correlation coefficient, is the copula
parameter.

4.2. Copula Modeling

The purpose of copula modeling is to find an optimal copula
function and also estimate its parameters to describe the
observed data (Xi, Yi). In this work, we use the maximum
likelihood estimate (MLE) method to estimate the parameters
of a copula function. For some target copula with the parameter
θ, the likelihood function of the sample (Xi, Yi), (i=1, 2,K, n)
is given by

q q=
=

( ) [ ( ) ( ) ] ( ) ( ) ( )L c F x G y f x g y, , . 7
i

n

i i i i
1

According to the MLE, the estimate of θ is q q=ˆ ( )Larg max ln .
Once the parameters θ of a group of target copula functions are
estimated, we will use the Akaike information criterion (AIC,
Akaike 1974) to select an optimal copula (e.g., Sato et al. 2011).
The AIC is given by

å q= - +
=

[ ( ) ( ) ] ( )c F x G y pAIC 2 ln , , 2 , 8
i

n

i i k
1

Figure 2. Correlation of core luminosity at 5 GHz vs. total luminosity at
408 MHz. The black squares and red stars represent RGs and SSRQs, respectively.
The magenta and green dashed lines show the linear fits, i.e., =Llog c

´  + ( ) ( )Llog 0.63 0.02 7.34 0.48t for RGs, and = ´L Llog logc t

 + ( ) ( )0.74 0.05 5.42 1.47 for SSRQs.
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where pk is the number of free parameters in the copula model.
We will take the copula with the smallest AIC value as the
optimal copula.

4.3. Marginal PDFs

In Equation (7), the marginal PDFs f (x) and g(y) need to be
estimated. This can be easily realized using non-parametric
estimation (e.g., KDE) or a parametric method such as MLE.
Once f (x) is known, F(x) is simply given by

ò=
-¥

( ) ( ) ( )F x f x dx, 9
x

similarly, for G(y) and g(y).
Take our RG sample, for example: the KDE estimated

marginal PDFs of LT and LC are given in Figure 3. The red and
blue dashed curves show the KDE result from the average of
the Monte Carlo simulations. The shaded orange and cyan
bands represent the uncertainty, taking into account the spread
of all the Monte Carlo simulation results. The reason for the

bimodal shape of the PDF(Lt) for RGs is presumably due to a
deficit of FRI/II boundary sources in our RG sample. It is well
known that the FRI and II morphological classifications
(Fanaroff & Riley 1974) strongly correlate with radio power:
radio sources with L408 MHz1025WHz−1 are dominated by
FR Is, while those with L408 MHz1027WHz−1 are almost
exclusively FR IIs (Zirbel & Baum 1995). The unimodal shape
of PDF(Lc) for RGs indicates that the difference between the
radio core powers of FR Is and FR IIs is less than the difference
between the extended radio powers, consistent with the study
by Zirbel & Baum (1995).
Note that for both RGs and SSRQs, the KDE estimated

PDF(Lc) is still not smoothed enough to take as an ideal
approximation of the true PDF, and this will affect the
smoothness of the final core RLF. We then use a parametric
method to estimate the marginal PDF ( )g Llog c , i.e., model it as
a normal distribution

ps
= - m

s

-

( ) ( )
( )

g L elog
1

2
, 10c

2

Lclog 2

2 2

where μ and σ are free parameters to be estimated by MLE.

4.4. Copulas for Lc−Lt

We have examined 31 published copulas and applied the
procedure introduced in Section 4.2 to our simulated samples to
find the best two for our data. The first one is the normal copula
given by Equation (6). The second one is the number 13
Archimedean copula from Nelson (2006, hereafter N13 copula)
formulated as

=q
- - + - -q q q( ) ( )[( ) ( ) ]C u v e, , 11u v1 1 ln 1 ln 1

1

where θ is the parameter, and q Î ¥( )0, .
In Figure 4, we show the distributions of the best-fit

parameters of the N13 and normal copula models for our
Monte Carlo samples, as well as the distributions of AIC values
for the two copula modelings. The upper and lower panels
correspond to RGs and SSRQs, respectively. Table 3
summarizes the means of best-fit parameters and AIC values
for the Monte Carlo samples. For both the RG and SSRQ
samples, the N13 copula model has lower AIC values, and we
will take it as the optimal copula.

4.5. Tail Dependence

Tail dependence is an important concept in copula theory. Let
X and Y be continuous random variables with distribution
functions F and G, respectively. The upper/lower tail dependence
parameter λU/λL is the limit (if it exists) of the conditional
probability that Y reaches extremely large/small values given that
X attains extremely large/small values (Nelson 2006), i.e.,

l = > >


- -
-

[ ( )∣ ( )] ( )P Y G t X F tlim , 12U
t 1

1 1

and

 l =


- -
+

[ ( )∣ ( )] ( )P Y G t X F tlim . 13L
t 0

1 1

From the above equations, we calculate that for both the normal
and N13 copulas, λU=λL=0. This implies that LT and LC are
tail-independent, meaning that when the cores reach extreme
luminosities the probability that lobes also show extreme
luminosities tends to zero. Physically, this can be understood as

Figure 3. Distribution of LC and LT for RGs and SSRQS. The light shaded
areas, estimated by 10,000 Monte Carlo simulations, represent the uncertainties
due to the incompleteness of spectral indices. The dashed–dotted and dashed
curves represent the average of the Monte Carlo results.
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follows. The core and total (mainly contributed by extended
emission) luminosities are correlated because the core and
extended emission relate to the same jet kinetic power. Never-
theless, these two measurements have different timescales:
extended radio luminosity is a proxy for time-averaged jet power
on timescales of tens to hundreds of Myr, while core luminosity
traces the instantaneous jet power (see Shabala 2018). In addition,
the lobe emission is more affected by external environment (e.g.,
Falcke et al. 2004), such as the density of intergalactic medium
(IGM). Both the timescale and environment factors weaken the
connection between core and extended radio luminosities. When
one of them reaches extremely large/small values, the other does
not respond in time. Examples can be found in recurrent AGNs, as
evidence is growing that AGN activity could be episodic (e.g.,
Saikia & Jamrozy 2009; Brocksopp et al. 2011; Liao et al. 2016).
During the phase of inactivity, sources may lack certain features,
such as radio cores or well-defined jets that are produced by
continuing activity, while the radio lobes still undergo a period of
fading before they disappear completely (Marecki & Szablewski
2009). During the phase of reactivation, very faint fossil radio
lobes remaining from an earlier active epoch can be observed,
along with newly restarting jets and cores (Murgia et al. 2011). In
these two situations, we can observe extremely low-luminosity
cores or lobes.

5. Determining the Core RLF

The RLF is defined as the number of sources per comoving
volume with luminosities in the range +L L d Llog , log log

r =( ) ( )z L
d N

dV d L
,

log
. 14

2

We denote the total RLF as r ( )z L,t t , and the core RLF as ρc(z, Lc).
In a previous work (Y17), we determined the total RLF based on a
mixture evolution scenario that takes into account both density
evolution (DE) and luminosity evolution (LE). Here, we adopt the
Model A of Y17 as the total RLF:

* *

r

f

=

-
b g-⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( ) ( ) ( )

( )

z L

e z
L e z

L

L e z

L

,

exp ,

15

t t

t t
1 1

2 2

where

=
+ + +

++
+

+
+( ) ( )( ) ( ) ( ) ( )e z

z z1 1
, 16c

p
c

p

z

z

p z

z

p1
1

1

1

1
c c

1 2

1 2

and

= +( ) ( ) ( )e z z1 . 17k
2 1

The parameters and their 1σ error for ρt are given in Table 4.

5.1. Semi-parametric Core RLF

Considering the existence of the LC−LT correlation, the
core RLF can be derived from the total RLF. The process is
similar to that used to derive the BHMF (Marconi et al. 2004).
The difference is that their correlation description was resorted

Figure 4. Left and middle panels: distributions of the best-fit parameters of the N13 and normal copula models for our Monte Carlo simulated samples. Right:
distributions of the AIC values for the N13 (red curve) and normal (black curve) copula modelings. The upper and lower panels are for RGs and SSRQs, respectively.

Table 3
Means of the Best-fit Copula Parameters and AIC Values

q̂ r̂ AIC N13 AIC Normal

RGs 5.584 0.794 −696.17 −674.55
SSRQs 3.178 0.588 −153.73 −152.35
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to the linear relation with a intrinsic dispersion while we use
copulas. Consulting Equation (5) and utilizing Equations (1),
(4), (9), (10), and (11), the conditional PDF of LC given
LT=Lt can be calculated as

=( ∣ ) [ ( ) ( )] ( ) ( )p L L c F L G L g Llog log log , log log . 18c t t t c

We then define r ( )z L d L, logt t t as the number of sources per unit
comoving volume at the redshift z, in the luminosity range of

Llog t, +L d Llog logt t. ( ∣ )p L L d Llog log logc t c is the prob-
ability that Lc is in the range of Llog c, +L d Llog logc c for a
given Llog t. Thus, the number of sources with Lc, Lt in the ranges
of Llog c, +L d Llog logc c and Llog t, +L d Llog logt t at a
redshift of z is

r
r

=
´

( ) ( ∣ )
( ) ( )

z L L d L d L p L L d L
z L d L

, , log log log log log
, log . 19

c t c t c t c

t t t

Finally, the core RLF ρc(z, Lc) is the convolution of ρt(z, Lt)
and ( ∣ )p L Llog logc t :

òr r=( ) ( ∣ ) ( ) ( )z L p L L z L d L, log log , log . 20c c c t t t t

where the limits of integration are =Llog 19t,min and
=Llog 30t,max , roughly corresponding to the Lt range for the

RG sample.
By measuring the LC−LT correlations and corresponding

copulas for the RG and SSRQ core samples separately, the core
RLFs for the two populations are derived by Equation (20).
Figure 5 shows the core RLFs at z=0.1, 0.5, 1.0, 2.0, and 3.0
(black, green, and red solid lines; blue and red dashed lines,
respectively). The gray bands, estimated by 10,000 Monte
Carlo simulations, represent the uncertainties due to the
incompleteness of spectral indices. Inspection of Figure 5
suggests that the shape and evolution of the core RLFs for RGs
and SSRQs are very similar. The main difference is that SSRQs
have higher characteristic luminosity. This is not surprising and
can be explained due to beaming. In Figure 6, we show the core
RLF of RGs changing with redshift at various luminosities. The
black, cyan, red, blue, and green dashed lines show the core
RLFs at =Llog 1910 5.0 GHz , 21, 23, 25, and 27 respectively.
The light shaded areas take into account not only the
uncertainties due to the incompleteness of spectral indices,
but also the 1σ error propagated from the total RLF by Y17.

5.2. Parametric Core RLF

The core RLF given in Equation (20) is a semi-parametric
function. It is not like the general luminosity functions (LFs),
which are obviously seen in DE or/and LE. We use a mixture
evolution model similar to that for ρt to describe the core RLF.
The only difference is replacing the modified Schechter

function in Equation (15) with a double power-law form:

* *

r

f

=

+
b g -⎡

⎣
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⎛
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, 21
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c c
1 1

2 2
1

where e1(z) and e2(z) are also given in Equations (16) and (17),
respectively. To determine the best-fit parameters in
Equation (21), we use a Bayesian Monte Carlo fitting engine

Table 4
Input Parameters for ρt and Best-fit Parameters for ρc

flog10 1 *Llog10 β γ zc p1 p2 k1

Total RLF - -
+4.85 0.12

0.13
-
+24.68 0.17

0.16
-
+0.44 0.02

0.02
-
+0.31 0.01

0.01
-
+0.86 0.09

0.10
-
+0.31 0.26

0.22 - -
+5.92 0.39

0.18
-
+4.73 0.09

0.16

Core RLF RG - -
+3.749 0.008

0.019
-
+21.592 0.026

0.015
-
+0.139 0.007

0.004
-
+0.878 0.002

0.002
-
+0.893 0.017

0.017
-
+2.085 0.077

0.051 - -
+4.602 0.057

0.066
-
+1.744 0.050

0.060

Core RLF SSRQ - -
+5.066 0.033

0.047
-
+24.624 0.073

0.051
-
+0.346 0.007

0.005
-
+0.976 0.009

0.008
-
+0.875 0.021

0.035
-
+2.090 0.119

0.093 - -
+4.361 0.106

0.057
-
+1.413 0.066

0.088

Note. Units—f1: (Mpc−3), L*: (W Hz−1).

Figure 5. Core RLFs derived by Equation (20) for RGs and SSRQs at z=0.1,
0.5, 1.0, 2.0, and 3.0 (black, green, and red solid lines; blue and red dashed
lines, respectively). The gray bands, estimated by 10,000 Monte Carlo
simulations, represent the uncertainties due to the incompleteness of spectral
indices.
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(McFit) developed by Zhang et al. (2016). First, we take a group
of uniformly spaced points (zi, Li)i=1,K,i=N in the -L zlog log
space. For each point, we calculate its fdata i and σdata i by
Equation (20), and fmod i by Equation (21). Note that σdata i takes
into account the uncertainties due to the incompleteness of
spectral indices, as well as the 1σ error propagated from the total
RLF parameters. Then, the χ2 is evaluated as

åc
s

=
-

=

⎛
⎝⎜

⎞
⎠⎟ ( )

f f
, 22

i

N
i i

i

2

1

data mod

data

2

which is related to the likelihood function by χ2=
−2ln(likelihood). Based on the form of χ2, the McFit engine
obtains the best-fit parameters shown in Table 4. The best-fit
core RLFs are shown as solid curves in Figure 6. We find that
the mixture evolution model fits the core RLFs well.

5.3. Intrinsic Core RLF

Padovani & Urry (1992) estimated that SSRQs have their
radio axes within 14°θ40°, and high-luminosity RGs are
in the range θ40°. Therefore beaming is important for the
cores of SSRQs, while it can be neglected for the cores of RGs.
Thus, the core RLF of RGs is close to the intrinsic core RLF.
Considering that the total RLF ρt in Equation (20) is measured
based on steep-spectrum radio sources (Y17), we estimate

r kr=( ) ( ) ( )z L z L, , , 23c c c c
intrinsic RG

where the value of κ should be equal to the ratio of the total
number of steep- and flat-spectrum radio sources to the total
number of steep-spectrum radio sources in the universe.
Assuming that the steep- and flat-spectrum radio sources are
divided by the critical viewing angle of 14◦, we have
k »  =1 cos 14 1.0306. κ is very close to one, suggesting
that the RG core RLF can be regarded as the intrinsic one.
The cores of SSRQs are expected to be the Doppler-beamed

counterparts of RG cores. In principle, the core RLFs of SSRQs
can be derived from the core RLFs of RGs by considering
beaming effect. For a RG core with a luminosity of Lc, after
beaming it will be observed as a quasar core with a luminosity
of c,

 d= ( )L , 24c c
q

with q=2+α for a continuous jet and q=3+α for a
moving, isotropic source (Urry & Padovani 1995). Other
values of q are also possible, e.g., Ajello et al. (2012) adopted a
value of q=4 that applies to the case of jet emission from a
relativistic blob radiating isotropically in the fluid frame. In
Equation (24), δ is the kinematic Doppler factor defined as

d g g q= - - -( ) ( )1 cos , 252 1

where g b= -1 1 2 is the Lorentz factor, β is the bulk
velocity in units of speed of light, and θ is the inclination angle.
To quantify the beaming effort, we need to know the PDF Pδ(δ)
for δ. Traditionally, the jet angles are assumed to be randomly
distributed within 0°�θ�90°. Based on this assumption, the
Pδ(δ) was determined by Lister (2003). Some later researchers
(e.g., Liu & Zhang 2007; Cara & Lister 2008; Ajello et al.
2012) followed this determination. However, for a specific
population of AGNs (e.g., SSRQs), the jet angles should be
(randomly) distributed within  q q q2 1 but not necessarily
0°�θ�90°. Thus, the formula calculating Pδ(δ) by Lister
(2003) should be modified to apply to more general conditions.
Here we give the generalized formula for deriving Pδ(δ) (see
the Appendix C, Equation (43) for its detailed definition and
deduction) as

òd
d

q q
g

g
g=

- -
d

d

d g-
( )

( )
( )

( )

( )
P

P
d

cos cos 1
, 26

A

B2

2 1 2

where Pγ(γ) is the PDF for γ. Little is known about the form of
Pγ(γ). In previous works (e.g., Lister 2003; Cara & Lister 2008;
Ajello et al. 2012), a power-law form with index k was usually
assumed:

g g=g ( ) ( )P C , 27k

Figure 6. Space densities as a function of redshift for RG and SSRQ cores. For
RGs, the black, cyan, red, blue, and green dashed lines show the core RLFs at

=Llog 1910 5.0 GHz , 21, 23, 25, and 27, respectively. For SSRQs, these lines
represent the core RLF at =Llog 2110 5.0 GHz , 23, 24, 26, and 28, respectively.
The light shaded areas take into account the uncertainties due to the
incompleteness of spectral indices, as well as the 1σ error propagated from
the total RLF by Y17. The solid curves represent the best-fit mixture evolution
model of Section 5.2.
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where C is a normalization constant and the function is valid
for γ1�γ�γ2. In this work, we also test a form similar to the
relativistic Maxwell-Jüttner distribution (e.g., Kroon &
Becker 2016) for Pγ(γ). In physics, the Maxwell-Jüttner
distribution is the distribution of speeds of particles in a
hypothetical gas of relativistic particles. We have

g
g g g

=
- -

g ( )
( )

( )
( )P

k

kK k

1 exp

1
, 28

2

2

where k is a free parameter, and K2 denotes the modified Bessel
function of the second kind. This function is valid for

g< < ¥1.0 . In practical calculations, we take a range of
1.01�γ�100, which can ensure a good normalization.

Given the Pδ(δ) and utilizing Equation (24), it is easy to
determine the conditional probability distribution of log c given

Llog c. In Appendix D, we give the formula of ( ∣ )p Llog logc c
for two cases: q is a constant (Equation (51)), and q follows the
Gaussian distribution (Equation (55)). A Monte Carlo simulation
suggests that the two cases give similar results. In the following
analysis, we adopt the first case for its simplicity, and


 

= d
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
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⎞
⎠⎟

⎞
⎠
⎟⎟( ∣ ) ( )p L

q L
P

L
log log

ln 10
. 29c c

c

c

c

c

q q
1 1

Now, similar to Equation (20), the Doppler-beamed RG core
RLF is calculated as

 òf r=( ) ( ∣ ) ( ) ( )z p L z L d L, log log , log , 30c c c c c c c

where the limits of integration are =Llog 18c,min and
=Llog 28c,max , roughly corresponding to the Lc range for the

RG sample. By fitting Equation (30) to the SSRQ core RLF, we
can determine the parameters of the Lorentz-factor distribution,
and the best-fit value of q. To get more information on the
parameters, we use the Markov chain Monte Carlo (MCMC)
sampling algorithm (Lewis & Bridle 2002; Yan et al. 2013). The
fitting is performed on three beaming models: (1) a power-law
form for Pγ(γ); (2) a form similar to the relativistic Maxwell-
Jüttner distribution for Pγ(γ); (3) the same form of Pγ(γ) as model
2, but setting θ1 and θ2 as free parameters. The fit values are
summarized in Table 5. The posterior probability distributions and
two-dimensional (2D) confidence contours of parameters in our
beaming models are given in Figure 7. With the 2D contours, one
can inspect the degeneracies between the input parameters (e.g.,
Yan et al. 2016).

Figure 8 shows how the best-fit beaming models reproduce
the core RLF of SSRQs. It seems that all the three models are
applicable. Model 2 has fewer free parameters than Model 1.
Having the same number of free parameters as Model 1, Model
3 has the advantage of constraining the range of viewing
angles. It gives values of q = -

+44.81 6.7
6.6 degrees and

q = -
+8.02 0.4

1.6 degrees. The value of θ2 is slightly smaller than
that of 14◦ given by Padovani & Urry (1992). According to the
unification scheme of AGNs, θ1 marks the division between
RGs and SSRQs, and θ2 is the demarcation angle between
FSRQs and SSRQs. From the relative numbers between RGs
and quasars, Barthel (1989) concluded that θ1=44°.4, very
close to our result. Based on the monitoring observations with
the Very Long Baseline Array (VLBA), Savolainen et al.
(2010) reported that 44 of 45 FSRQs in their sample have

viewing angles �8°.5, and only one has a viewing angle of
14°.8. Their statistics are in good agreement with the results of
our analysis.
In Figure 9, we show the distributions of Lorentz factors and

Doppler factors predicted by the beaming models. The power-
law index of Model 1 is = - -

+k 1.38 0.16
0.10, which is in agreement

with the k∼−1.5 found for the CJ-F survey (Lister &
Marscher 1997). Model 1 implies an average Lorentz factor for
SSRQs of g = -

+11.68 0.70
1.59. Models 2 and 3 give g = -

+10.27 0.13
0.10

and g = -
+9.84 2.50

3.61, respectively. On average, our result is close
to the average Lorentz factor for Fermi-detected FSRQs, which
is g = -

+11.7 2.2
3.3 given by Ajello et al. (2012).

6. Discussion

6.1. Comparing Core RLF with Total RLF

Compared with the total RLF, the typical characteristic of the
core RLF (see Figure 6) is the negative evolution occurring at a
redshift of z0.8. In Figure 10, we plot the core RLF for RGs
and the total RLF (also see the “Model A” panel of Figure 3
in Y17) together. Note that for low- and high-luminosity cores,
the variation of space density with redshift behaves very
similarly, implying a very weak luminosity-dependent evol-
ution. As for the total RLF, however, both the amount of space
density changing from redshift zero to the maximum space
density, and the peak redshift are strong functions of radio
luminosity. Figure 11 shows the variation in the redshift of the
peak space density with radio luminosity for the core RLF,
compared with that for total RLF. Note for the core RLF, the
peak redshift increases very slightly with radio core luminosity,
while for the total RLF, the increase is dramatic.
The parametric core RLF in Section 5.2 allows us to

determine the DE and LE for radio cores. They are given by
Equations (16) and (17). In the upper panel of Figure 12, we
plot the LE function of radio cores compared with that of the
total source. Both the cores and total source show a positive
LE, but the LE of the cores is less dramatic. The positive LE
suggests that both the radio cores and lobes at higher redshift
are systematically brighter than those of today. A possible
explanation is that both the average density of the universe and
the gas fraction are higher (Best et al. 2014) at higher redshifts,
so that the radio lobes of AGNs remain more confined and
adiabatic expansion losses are lower, leading to higher
synchrotron luminosities (e.g., Barthel & Arnaud 1996). On
the other hand, the positive LE for cores is milder than that for
lobes, implying that the denser environment at high redshift has
relatively less impact on the core luminosity. Less interaction

Table 5
Parameters of the Beaming Models

Parameter Model 1 Model 2 Model 3

q -
+4.679 0.005

0.003
-
+4.679 0.017

0.006
-
+3.606 0.103

0.334

k - -
+1.38 0.16

0.10
-
+3.38 0.04

0.03
-
+3.23 0.85

1.21

γ1 -
+3.54 0.10

0.09 1.01 1.01

γ2 -
+34.82 3.95

12.52 100 100

θ1 40 40 -
+44.78 6.65

6.61

θ2 14 14 -
+7.98 0.42

1.58

Note. Parameters without an error estimate were kept fixed during the fitting
stage. The units of θ1 and θ2 are degrees.
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with external environment often means less shocks, less energy
dissipation, and less radio emission (Falcke et al. 2004).

The DE function of the cores cannot be compared directly
with that of the total source. We define the normalized DE
function as:

 ò òr r= =( ) ( ) ( ) ( )z z L dL z L dL, 0, . 31
L

L

L

L

min

max

min

max

The normalized DE functions of radio core and total source are
shown in the lower panel of Figure 12. The two functions are in
good agreement within the uncertainty range, indicating that
the core and lobes co-evolve with redshift. It is possible that
they are not completely consistent, e.g., episodic AGN activity
could cause deviations. This would allow the presence of RGs
with a “switched-off core (e.g., Marecki & Szablewski 2009),
or having dying radio lobes from an earlier active epoch along
with newly restarting jets and cores (e.g., Murgia et al. 2011).
But such sources do not appear to dominate our sample.

Falcke et al. (1995) argued that the difference between radio-
loud and radio-weak is established already on the parsec scale.
We find that the DE function of radio cores peaks at z∼0.8
and then rapidly decreases, indicating that core-bright radio-
loud AGNs at high redshift are less numerous. The redshift at
which radio cores peak is lower than the redshift of BH growth.
The reason for this is not entirely clear but it is presumably
related to redshift-dependent accretion efficiency and jet
triggering. For example, simulations of AGN evolution by
Hirschmann et al. (2014) have revealed that the number of BHs
accreting close to the Eddington rate decrease with increasing
redshift. This implies that the dominant mechanism of AGN
fueling changes with cosmic time from cold gas accretion via
major mergers to radiatively inefficient accretion directly from
hot gas halos (Rigby et al. 2015).
In the lower panel of Figure 12, we also plot the normalized

DE of Fermi-detected FSRQs as a function of redshift (adopted
from the Figure 15 of Ajello et al. 2012). The general trend of
their result is consistent with our determination. Nevertheless, it

Figure 7. Posterior probability distributions and 2D confidence contours of parameters in the beaming models. The red dash-dotted curves are the mean likelihoods of
MCMC samples and the black solid curves are the marginalized probabilities. The contours are for 1σ and 2σ levels. The upper, lower left, and lower right panels
correspond to models 1, 2, and 3 respectively.
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seems that both the decline in the space density after the
redshift peak and the increase in space density leading up to the
redshift peak are more dramatic than that of our result. Also
note that their peak redshift is z∼0.6, which is smaller than
our determination of z∼0.8. We speculate that the above
difference is caused because the Fermi-detected FSRQ sample
bias to those extreme FSRQs with, on average, faster apparent
jet speeds and smaller viewing angles (e.g., Lister et al. 2009;
Savolainen et al. 2010). It represents an extreme sub-sample of
FSRQs.

6.2. Other Input Models of Total RLF

Our key equation for determining the core RLF is given by
Equation (20). Given ( ∣ )p L Llog logc t , the calculation of core
RLF depends on the model adopted for the total RLF. In order
to rule out the possibility that a different total RLF model may
significantly change the main result, we need to perform a
comparison test. In the test, we adopt the Model C of Y17 as
the new total RLF, for which r ( )z L,t t and e1(z) are also given
by Equation (15) and (16), while e2(z) is given by

= +( ) ( )e z 10 . 32k z k z
2 1

2
2

Model C permits the possibility of negative LE at high redshift,
and it was comparable to Model A in fitting the data of Y17.
Figure 13 compares the core RLFs derived for the two total
RLF models. The black, cyan, red, blue and green dashed lines
show the core RLFs at =Llog 1910 5.0 GHz , 21, 23, 25, and 27,
respectively, for Model C. The solid curves represent the core
RLF for RGs determined in Section 5.1. The core RLFs are not

significantly different at z3. Their only difference lies in the
steepness of the high-redshift decline of ρc. Due to a lack of
high-redshift samples, the total RLFs in Y17 cannot conclude
whether the high-redshift decline of ρt is sharp or shallow. The
core RLFs here inherit such uncertainty.

6.3. Luminosity-dependent Evolution

In the past decades, it has been established that the evolution
of the LFs of AGNs is luminosity-dependent (e.g., Waddington
et al. 2001; Ueda et al. 2003; Hasinger et al. 2005; Hopkins
et al. 2007; Croom et al. 2009; Aird et al. 2010; Rigby et al.
2011; Ajello et al. 2012; Zeng et al. 2013; Delvecchio et al.
2014). Physically, this was usually interpreted as a sign of
cosmic downsizing, where the most massive black holes form
at earlier epochs than their less massive counterparts (Rigby
et al. 2015). To describe the luminosity-dependent evolution of
optical, X-ray, and γ-ray LFs, the luminosity-dependent density
evolution (LDDE) model was developed and became popular.
But the LDDE model is unable to model the steep-spectrum
RLF (Y17). We thus develop a mixture evolution scenario
(Yuan et al. 2016, Y17), which suggests that the evolution of
RLF is due to a combination of DE and LE. In essence, the DE
determines when the density curve will peak and when it will
decline, while the LE can shift the location of peaks according
to different luminosities, such that a luminosity-dependent
evolution is a natural result. The mixture evolution scenario is
especially suitable for interpretation of the difference between
core and total RLFs: although the cores and lobes experience

Figure 8. Core RLFs of RGs (orange dotted line) and SSRQs (black dotted line) at z=0.1 and the best-fit beaming models described in Section 5.3. The light shaded
areas represent the uncertainties due to the incompleteness of spectral indices.
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synchronous DE, the cores have significantly weaker LE than
lobes.

6.4. Comparison with Previous Studies

In the decades since the discovery of radio AGNs, studies on
the core RLF have been few. An early determination of the core
RLF was given by Falcke et al. (2004). Based on the 150 mas-
scale radio nuclei in the Palomar sample, they derived the
15 GHz core RLF of nearby galaxies (mainly consisting of low-

luminosity AGNs). This result is shown as black open circles
with error bars in Figure 14. Note that Falcke et al.’s (2004)
errors are large and within those errors his core RLF is in
reasonable agreement with our result. Nevertheless, at the faint
end ( <Llog 2110 5.0 GHz ) his core RLF appears to be higher than
our RG core RLF. This is because at the faint end our core RLF
may not sufficiently consider the contribution of low-
luminosity AGNs.
Based on a combined sample of steep-spectrum radio AGNs,

Yuan & Wang (2012) investigated the core RLF using the
binned V1 max method. However, that core sample was not
strictly a flux-limited complete sample, and the minimum core
flux density of the sample was used as the flux limit to estimate

V1 i
max . This would significantly underestimate the core RLF

(Yuan & Wang 2013). Thus, the result in that work can only be
regarded as a rough estimation. Yuan & Wang (2012)
concluded that the comoving number density of radio cores
displays a persistent decline with redshift, implying a strong
negative evolution. Now it seems that this conclusion partly
reflects the truth. The result based on the more rigorous method
in this work indicates that the negative evolution of cores
occurs at a redshift of z0.8.
Using a sample of 202 radio sources from the Australia

Telescope 20 GHz (AT20G) survey identified with galaxies
from the 6dF Galaxy Survey (6dFGS), Sadler et al. (2014)
made the first measurement of the local RLF of RGs at 20 GHz.
Since the radio emission from active galaxies at 20 GHz arises
mainly from the galaxy core, rather than from extended radio
lobes (e.g., Sadler et al. 2006), the measurement of Sadler et al.
(2014) can be treated as the local core RLF. In Figure 14, their
result is shown as red solid squares, and is in good agreement
with our core RLF.
Another study involving the core RLF was performed by Di

Mauro et al. (2014, hereafter D14). They obtained the core RLF
from the total RLF of Willott et al. (2001) by a simple
transformation:

r r=( ) ( ( )) ( )z L z L L
d L

d L
, ,

log

log
, 33c c t t c

t

c

where Lt(Lc) and d L d Llog logt c derive from the total–core
correlation, i.e.,

=  + ( ) ( ) ( )L Llog 4.2 2.1 log 0.77 0.08 . 34c t
5 GHz 1.4 GHz

Figure 9. Distributions of Lorentz factors (upper panel) and Doppler factors
(lower panel) predicted by the beaming models.

Figure 10. Comparison between core RLF for RGs and total RLF (Model A
of Y17). From top to bottom, the black dashed lines show the core RLFs at

=Llog 1910 5.0 GHz , 21, 23, 25, and 27, respectively, and the red solid lines
represent the total RLFs at =Llog 23.010 408 MHz , 24.5, 25.5, 26.5, 27.5, and
28.5 respectively.

Figure 11. Variation in the redshift of the peak space density with radio
luminosity for the core RLF, compared with that for total RLF.
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The premise of using Equation (33) is that Lc is a function of Lt.
But obviously, there is no definite functional relationship
between Lc and Lt. The only rigorous concept describing the
correlation between Lc and Lt is conditional probability, which
can be well measured via the copula method, while the linear fit
like Equation (34) is only a rough sketch. Thus, the estimation
obtained with Equations (33) and (34) may distort the true core
RLF. In Figure 14, we show the core RLF derived by D14 as a
red solid line.

6.5. The Copula versus the Non-copula Method

Both the copula approach here and D14’s simpler approach are
indirect techniques of estimating the core RLF. The precision
significantly depends on how accurately the LC−LT correlation
is measured. Unlike our copula method, D14’s approach does not
incorporate the intrinsic dispersion in the LC−LT correlation. To
further compare the core RLF derived by copula with that using a
non-copula approach, we derive the core RLF by applying D14’s
transformation approach to our total RLF (Y17 model A). This is
shown as the green dashed line in Figure 14. Note that D14s core

RLF and our non-copula core RLF agree, but they are
significantly different from the core RLF derived using the copula
method. They are steeper at both faint ( <Llog 2110 5.0 GHz ) and
bright ( >Llog 2410 5.0 GHz ) luminosities. In general, they are
inferior to the copula-based result in fitting the observed data,
particularly those data obtained more recently.

Figure 13. Core RLF for RGs determined based on a different total RLF model
(the Model C of Y17). The black, cyan, red, blue, and green dashed lines show
the core RLFs at =Llog 1910 5.0 GHz , 21, 23, 25, and 27, respectively. The light
shaded areas take into account the uncertainties due to the incompleteness of
spectral indices, as well as the 1σ error propagated from the Model C total RLF
by Y17. The solid curves represent the core RLF for RGs determined in
Section 5.1.

Figure 14. Comparison of our core RLFs with previous results. The orange
dotted line shows our RG core RLF at z=0.1, with the cyan band taking into
account the combined uncertainty due to the incompleteness of spectral indices,
as well as the 1σ error propagated from the total RLF by Y17. The green
dashed line shows the core RLF derived by non-copula method. The black
open circles with error bars represent the 15 GHz core RLF of nearby galaxies
measured by Falcke et al. (2004). The local RLF of RGs at 20 GHz measured
by Sadler et al. (2014) is shown as red solid squares. The red solid line shows
the core RLF derived by Di Mauro et al. (2014). A flat spectrum for the core
(a = 0c ) is assumed, ensuring that core RLFs at different frequencies can be
compared directly.

Figure 12. LE (upper panel) and normalized DE (lower panel) as functions of
redshift. The red solid and black dashed lines represent the total and cores,
respectively. In the lower panel also plotted is the normalized DE of Fermi-detected
FSRQs (blue solid line) as a function of redshift (derived from the Figure 15 of
Ajello et al. 2012). The light shaded areas take into account the 1σ error bands.
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7. Summary and Conclusions

The main results of this work are as follows.

1. We verified, through a partial correlation analysis, that
the correlation between the core and total radio
luminosities of radio AGNs is significant. We then
explored the correlation via a powerful statistical tool
called “Copula.” For both RGs and SSRQs, we find that
the number 13 Archimedean copula of Nelson (2006) can
well describe the Lc− Lt correlation. Our results find the
copula is tail-independent, implying that when the cores
reach extreme luminosities, the probability that lobes also
show extreme luminosities tends to zero.

2. The conditional probability distribution ( ∣ )p L Llog logc t
is obtained based on the copula-described Lc− Lt
relation. We then derive the core RLFs as a convolution
of ( ∣ )p L Llog logc t and the total RLF that was determined
by Yuan et al. (2017). The core RLFs are derived
separately for RGs and SSRQs according to their own
copula description. Our results are in reasonable agree-
ment with studies that have used radio emission at high
frequency as a measure of the core emission.

3. We argue that for a specific population of AGNs (e.g.,
SSRQs), the jet angles should be (randomly) distributed
within θ2�θ�θ1 but not necessarily 0°�θ�90°.
Thus, the formula calculating the PDF Pδ(δ) for δ by
Lister (2003) should be modified to apply to more general
conditions. In this work we give the generalized formula
for deriving Pδ(δ).

4. By assuming that the RG core RLF is the intrinsic core
RLF, we find the SSRQ core RLF can be reproduced by
imposing a Doppler beaming effect on the RG core RLF.
Consistent with previous studies, we find that the
distribution of Lorentz factor can be described by a
power-law form, and a form similar to the relativistic
Maxwell-Jüttner distribution is also applicable. Our
preferred beaming model suggests that SSRQs have an

average Lorentz factor of g = -
+9.84 2.50

3.61, and that most are
seen within 8°θ45° of the jet axis.

5. We find that while the DE of the core and total RLFs
match within uncertainties, there is a significant differ-
ence in their luminosity evolution. The core RLF presents
a very weak luminosity-dependent evolution, with the
number density peaking around z∼0.8 for all luminos-
ities. The redshift at which core RLF peaks is lower than
that of the peak of BH growth. The reason for this is not
entirely clear, but it is presumably related to redshift-
dependent accretion efficiency and jet triggering.
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Appendix A
The Sample of 503 Sources

Table 6 contains the 503 sources of Sample II.

Table 6
Summary of Sample

IAU Other z St0.408 αt Score5.0 αc Classification References
Name Jy mJy

0101−649 L 0.1630 1.15 0.55 179.2 −0.22 G 1
0736+017 L 0.1910 2.840 0.21 1780 L Q 2
2315−425 PMN J2317−4213 0.0560 0.97i 0.80 <20.6 0.49 G 1, 37
2316−423 L 0.0545 1.67 0.05 139.9 0.1 G 1
0123−016 L 0.0180 16.40 0.93 100 −0.3 G 2
0005−199 L 0.1223 2.08 0.70 14 −0.54 G 3, 4, 5
0222+36 L 0.0327 0.37 0.21 140 −0.47 G 6, 7, 8
1144+352 B2 1144+35B 0.0631 0.33 −0.53 243 L G 7, 18, 25
2308+098 4C09.72 0.432 1.99 0.74 102 L Q 21, 23, 24

Note. Column (1). Source name in IAU designation (B1950). Column (2). Other name if available. Column (3). Spectroscopic redshift. Column (4). Total flux density
at 408 MHz in Jy. Those with a flag “i” mean that their St0.408 are interpolated from near frequencies. Column (5). Spectral index near 408 MHz, defined by S∝ν−α).
Column (6). Core flux density at 5 GHz in mJy. Column (7). Core spectral index near 5 GHz. Column (8). Classification: G=radio galaxy; Q=quasar. Column (9).
References: (1) Jones et al. (1994), (2) Morganti et al. (1993), (3) Ekers et al. (1989), (4) Slee et al. (1994), (5) Govoni et al. (2000), (6) Hardcastle et al. (2003),
(7) Liuzzo et al. (2009), (8) Giroletti et al. (2005), (9) Bridle et al. (1991), (10) Feretti et al. (1984), (11) Fanti et al. (1987), (12) Fanti et al. (1978), (13) Capetti et al.
(2002), (14) Capetti et al. (1995), (15) Morganti et al. (1997), (16) Kharb & Shastri (2004), (17) Giovannini et al. (1988), (18) Giovannini et al. (2007), (19) Canosa
et al. (1999), (20) Reid et al. (1999), (21) Wright & Otrupcek (1990), (22) Large et al. (1981), (23) Large et al. (1991), (24) Nilsson (1998), (25) Colla et al. (1970),
(26) Douglas et al. (1996), (27) Ficarra et al. (1985), (28) Riley (1989), (29) Kellermann et al. (1969), (30) Steenbrugge et al. (2010), (31) Condon et al. (1998),
(32) Hales et al. (1990), (33) Lacy et al. (1993), (34) McCarthy et al. (1989), (35) Ekers & Kotanyi (1978), (36) Mantovani et al. (1992), (37) Wright et al. (1994),
(38) White & Becker (1992).

(This table is available in its entirety in machine-readable form.)
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Appendix B
Partial Correlation Analysis

In statistics, partial correlation measures the degree of
association between two random variables, after eliminating the
effect of all other random variables. Suppose there are three
random variables xi, xj, and xk. The correlation coefficient
between two of them, say xi and xj, is denoted by rij. The partial
correlation of xi and xj given xk is (Kendall & Stuart 1979)

=
-

- -
( )∣r

r r r

r r1 1
. 35ij k

ij ik jk

ik jk
2 2

The correlation coefficients rij, rik, and rjk can be calculated
based on Pearson’s, Kendall’s, or Spearman’s correlation
methods. In this work we use the Spearman rank-order
correlation coefficient, which is given by Equation (35) of
Inoue (2011). According to Kim (2015), the statistics ∣tij k of the
partial correlation is calculated by

=
- -
-

( )∣ ∣
∣

t r
N g

r

2

1
, 36ij k ij k

ij k
2

where N is the sample size and g is the total number of given
variables (here g=1). The probability of the null hypothesis
that xi and xj are uncorrelated, i.e., the p-value, is given by

= F - - -( ∣ ∣ ) ( )∣ ∣p t N g2 , 2 , 37ij k t ij k

where Φt(·) is the cumulative density function of a Student’s t
distribution with the degree of freedom N− 2− g (see Kim
2015, for details).

Appendix C
Doppler Factor Distributions

We determine the PDF Pδ(δ) that describes the expected
distributions of Doppler factors for a randomly oriented, two-sided
jet population. Suppose the PDF of Lorentz factors is Pγ(γ) which
is valid for γ1�γ�γ2. As mentioned in Section 5.3, SSRQs
have their radio axes within θ1θθ2, and θ1=40°,
θ2=14°. Thus, the viewing angles are distributed according to

q
q

q q
=

-
q ( ) ( )P

sin

cos cos
. 38

2 1

We define

g q g g q= - -d
-( ) ( ) ( )f , 1 cos , 392 1

and

d q
q d q
d q

=
 -

( ) ( )g ,
1 cos 1 sin

sin
. 40

2 2

2

Given θ2�θ�θ1 and γ1�γ�γ2, the possible Doppler
factors range from
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According to the theory of probability transformation for
several variables (e.g., Lister 2003), the PDF for δ is given by
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where the upper limit of integral is

d g d q= +( ) [ ( )] ( )B gmin , , . 442 2

The lower limit of the integral is a bit more complex than
that discussed by Lister (2003, see their Equation (23)). It
depends on the relationship between γ1, γ2, θ1, and θ2.
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For Equations (48) and (49), what needs to be specifically
noted is the situation when g q d <d q
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d d q= -( ) ( )A g ,1 1 , and d d q= +( ) ( )A g ,2 1 . Figure 15 shows the
PDF of δ with g gµg

-( )P 1.5 for the five cases discussed above.

Appendix D
The Conditional Probability Distribution of log c

Given Llog c

From Equation (24), we have

 d= + ( )L qlog log log . 50c c

If q is a constant, according to the univariate theory of probability
transformation, the conditional probability distribution of log c

given Llog c is


 

= d
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( ∣ ) ( )p L

q L
P

L
log log

ln 10
. 51c c

c

c

c

c

q q
1 1

If a= +q qc , where qc is a constant and α is the spectral
index of radio core, q will follow the similar distribution with
α. As mentioned in Section 3.2, the distribution of α is well fit
by a Gaussian function with mean and sigma given in Table 2.
Thus, the PDF for q is
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where σ=0.397 and μ=qc+0.001. Since log c is the
function of q and δ, the PDF for log c is
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From Equation (50), we have
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Thus the conditional probability distribution of log c given
Llog c is
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