642 research outputs found

    Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

    Get PDF
    Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential ad

    Complex-valued Burgers and KdV-Burgers equations

    Full text link
    Spatially periodic complex-valued solutions of the Burgers and KdV-Burgers equations are studied in this paper. It is shown that for any sufficiently large time T, there exists an explicit initial data such that its corresponding solution of the Burgers equation blows up at T. In addition, the global convergence and regularity of series solutions is established for initial data satisfying mild conditions

    Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics

    Get PDF
    An n-qubit quantum circuit performs a unitary operation on an exponentially large, 2n-dimensional, Hilbert space, which is a major source of quantum speed-ups. We develop a new “Quantum singular value transformation” algorithm that can directly harness the advantages of exponential dimensionality by applying polynomial transformations to the singular values of a block of a unitary operator. The transformations are realized by quantum circuits with a very simple structure – typically using only a constant number of ancilla qubits – leading to optimal algorithms with appealing constant factors. We show that our framework allows describing many quantum algorithms on a high level, and enables remarkably concise proofs for many prominent quantum algorithms, ranging from optimal Hamiltonian simulation to various quantum machine learning applications. We also devise a new singular vector transformation algorithm, describe how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum, and show how to efficiently implement principal component regression. Finally, we also prove a quantum lower bound on spectral transformations

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    A Monitor of Beam Polarization Profiles for the TRIUMF Parity Experiment

    Get PDF
    TRIUMF experiment E497 is a study of parity violation in pp scattering at an energy where the leading term in the analyzing power is expected to vanish, thus measuring a unique combination of weak-interaction flavour conserving terms. It is desired to reach a level of sensitivity of 2x10^-8 in both statistical and systematic errors. The leading systematic errors depend on transverse polarization components and, at least, the first moment of transverse polarization. A novel polarimeter that measures profiles of both transverse components of polarization as a function of position is described.Comment: 19 pages LaTeX, 10 PostScript figures. To appear in Nuclear Instruments and Methods in Physics Research, Section

    Recent glitches detected in the Crab pulsar

    Full text link
    From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches Δνp\Delta\nu_{p} and Δν˙p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is \sim 6.8 ×106\times 10^{-6} Hz, \sim 3.5 times that of the glitch occured in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant \sim 21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Measurement of Branching Fractions and Charge Asymmetries for Two-Body B Meson Decays with Charmonium

    Full text link
    We report branching fractions and charge asymmetries for exclusive decays of charged and neutral B mesons to two-body final states containing a charmonium meson, J/psi or psi(2S). This result is based on a 29.4 fb^{-1} data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+e- collider.Comment: 13 pages, 5 figures, revte
    corecore