126 research outputs found

    Learning Culture: Cultural Relationship in Masked Lanterns

    Get PDF
    Culture shock, or culture conflict, is the unfamiliarity or disorientation an individual experiences after encountering a culture different than their own. To better understand the people around us who share a different culture and the way of life it creates, we need to first respect and understand their culture. In general, Chinese culture stresses that individuals must see themselves as part of a larger group for the benefit of society, while American culture stresses the importance of individualism. Based on my experiences in graphic design, I decided to further my studies in a studio art context to understand how the cultures of artists affect their artwork. It is important for us to have a basic sense of other cultures to appreciate the value of human development, as well as, appreciating the different forms of beauty that make the world more interesting to explore. This appreciation of beauty and human development is often encountered when experiencing works of art and design. The issues which arise from cyber bullying reach across the globe, and I have seen them firsthand throughout my life. It is my goal to delve into this issue and compare how individuals from different cultural backgrounds react to this issue. For this project, I surveyed the responses regarding the issue of cyber bullying from Americans, Chinese-American, and Chinese international students, in order to understand how one’s culture influences the opinions people form on the issue. I created several art works to share with the viewer my results

    The CLIP Model is Secretly an Image-to-Prompt Converter

    Full text link
    The Stable Diffusion model is a prominent text-to-image generation model that relies on a text prompt as its input, which is encoded using the Contrastive Language-Image Pre-Training (CLIP). However, text prompts have limitations when it comes to incorporating implicit information from reference images. Existing methods have attempted to address this limitation by employing expensive training procedures involving millions of training samples for image-to-image generation. In contrast, this paper demonstrates that the CLIP model, as utilized in Stable Diffusion, inherently possesses the ability to instantaneously convert images into text prompts. Such an image-to-prompt conversion can be achieved by utilizing a linear projection matrix that is calculated in a closed form. Moreover, the paper showcases that this capability can be further enhanced by either utilizing a small amount of similar-domain training data (approximately 100 images) or incorporating several online training steps (around 30 iterations) on the reference images. By leveraging these approaches, the proposed method offers a simple and flexible solution to bridge the gap between images and text prompts. This methodology can be applied to various tasks such as image variation and image editing, facilitating more effective and seamless interaction between images and textual prompts.Comment: Accepted by NeurIPS 2023, 21 pages, 28 figure

    WordSup: Exploiting Word Annotations for Character based Text Detection

    Full text link
    Imagery texts are usually organized as a hierarchy of several visual elements, i.e. characters, words, text lines and text blocks. Among these elements, character is the most basic one for various languages such as Western, Chinese, Japanese, mathematical expression and etc. It is natural and convenient to construct a common text detection engine based on character detectors. However, training character detectors requires a vast of location annotated characters, which are expensive to obtain. Actually, the existing real text datasets are mostly annotated in word or line level. To remedy this dilemma, we propose a weakly supervised framework that can utilize word annotations, either in tight quadrangles or the more loose bounding boxes, for character detector training. When applied in scene text detection, we are thus able to train a robust character detector by exploiting word annotations in the rich large-scale real scene text datasets, e.g. ICDAR15 and COCO-text. The character detector acts as a key role in the pipeline of our text detection engine. It achieves the state-of-the-art performance on several challenging scene text detection benchmarks. We also demonstrate the flexibility of our pipeline by various scenarios, including deformed text detection and math expression recognition.Comment: 2017 International Conference on Computer Visio

    Don't Stop Learning: Towards Continual Learning for the CLIP Model

    Full text link
    The Contrastive Language-Image Pre-training (CLIP) Model is a recently proposed large-scale pre-train model which attracts increasing attention in the computer vision community. Benefiting from its gigantic image-text training set, the CLIP model has learned outstanding capabilities in zero-shot learning and image-text matching. To boost the recognition performance of CLIP on some target visual concepts, it is often desirable to further update the CLIP model by fine-tuning some classes-of-interest on extra training data. This operation, however, raises an important concern: will the update hurt the zero-shot learning or image-text matching capability of the CLIP, i.e., the catastrophic forgetting issue? If yes, could existing continual learning algorithms be adapted to alleviate the risk of catastrophic forgetting? To answer these questions, this work conducts a systemic study on the continual learning issue of the CLIP model. We construct evaluation protocols to measure the impact of fine-tuning updates and explore different ways to upgrade existing continual learning methods to mitigate the forgetting issue of the CLIP model. Our study reveals the particular challenges of CLIP continual learning problem and lays a foundation for further researches. Moreover, we propose a new algorithm, dubbed Learning without Forgetting via Replayed Vocabulary (VR-LwF), which shows exact effectiveness for alleviating the forgetting issue of the CLIP model.Comment: 12 pages, 5 figure

    Dynamic Model Identification for 6-DOF Industrial Robots

    Get PDF
    A complete and systematic procedure for the dynamical parameters identification of industrial robot manipulator is presented. The system model of robot including joint friction model is linear with respect to the dynamical parameters. Identification experiments are carried out for a 6-degree-of-freedom (DOF) ER-16 robot. Relevant data is sampled while the robot is tracking optimal trajectories that excite the system. The artificial bee colony algorithm is introduced to estimate the unknown parameters. And we validate the dynamical model according to torque prediction accuracy. All the results are presented to demonstrate the efficiency of our proposed identification algorithm and the accuracy of the identified robot model

    Awesome-META+: Meta-Learning Research and Learning Platform

    Full text link
    Artificial intelligence technology has already had a profound impact in various fields such as economy, industry, and education, but still limited. Meta-learning, also known as "learning to learn", provides an opportunity for general artificial intelligence, which can break through the current AI bottleneck. However, meta learning started late and there are fewer projects compare with CV, NLP etc. Each deployment requires a lot of experience to configure the environment, debug code or even rewrite, and the frameworks are isolated. Moreover, there are currently few platforms that focus exclusively on meta-learning, or provide learning materials for novices, for which the threshold is relatively high. Based on this, Awesome-META+, a meta-learning framework integration and learning platform is proposed to solve the above problems and provide a complete and reliable meta-learning framework application and learning platform. The project aims to promote the development of meta-learning and the expansion of the community, including but not limited to the following functions: 1) Complete and reliable meta-learning framework, which can adapt to multi-field tasks such as target detection, image classification, and reinforcement learning. 2) Convenient and simple model deployment scheme which provide convenient meta-learning transfer methods and usage methods to lower the threshold of meta-learning and improve efficiency. 3) Comprehensive researches for learning. 4) Objective and credible performance analysis and thinking

    PiP: Planning-informed Trajectory Prediction for Autonomous Driving

    Full text link
    It is critical to predict the motion of surrounding vehicles for self-driving planning, especially in a socially compliant and flexible way. However, future prediction is challenging due to the interaction and uncertainty in driving behaviors. We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting. Our approach is differentiated from the traditional manner of prediction, which is only based on historical information and decoupled with planning. By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets. Moreover, our approach enables a novel pipeline which couples the prediction and planning, by conditioning PiP on multiple candidate trajectories of the ego vehicle, which is highly beneficial for autonomous driving in interactive scenarios.Comment: European Conference on Computer Vision (ECCV) 2020; Project page at http://haoran-song.github.io/planning-informed-predictio

    Which Framework is Suitable for Online 3D Multi-Object Tracking for Autonomous Driving with Automotive 4D Imaging Radar?

    Full text link
    Online 3D multi-object tracking (MOT) has recently received significant research interests due to the expanding demand of 3D perception in advanced driver assistance systems (ADAS) and autonomous driving (AD). Among the existing 3D MOT frameworks for ADAS and AD, conventional point object tracking (POT) framework using the tracking-by-detection (TBD) strategy has been well studied and accepted for LiDAR and 4D imaging radar point clouds. In contrast, extended object tracking (EOT), another important framework which accepts the joint-detection-and-tracking (JDT) strategy, has rarely been explored for online 3D MOT applications. This paper provides the first systematical investigation of the EOT framework for online 3D MOT in real-world ADAS and AD scenarios. Specifically, the widely accepted TBD-POT framework, the recently investigated JDT-EOT framework, and our proposed TBD-EOT framework are compared via extensive evaluations on two open source 4D imaging radar datasets: View-of-Delft and TJ4DRadSet. Experiment results demonstrate that the conventional TBD-POT framework remains preferable for online 3D MOT with high tracking performance and low computational complexity, while the proposed TBD-EOT framework has the potential to outperform it in certain situations. However, the results also show that the JDT-EOT framework encounters multiple problems and performs inadequately in evaluation scenarios. After analyzing the causes of these phenomena based on various evaluation metrics and visualizations, we provide possible guidelines to improve the performance of these MOT frameworks on real-world data. These provide the first benchmark and important insights for the future development of 4D imaging radar-based online 3D MOT.Comment: 8 pages, 5 figures, submitted to the 2024 IEEE International Conference on Robotics and Automation (ICRA2024

    CFGPT: Chinese Financial Assistant with Large Language Model

    Full text link
    Large language models (LLMs) have demonstrated great potential in natural language processing tasks within the financial domain. In this work, we present a Chinese Financial Generative Pre-trained Transformer framework, named CFGPT, which includes a dataset~(CFData) for pre-training and supervised fine-tuning, a financial LLM~(CFLLM) to adeptly manage financial texts, and a deployment framework~(CFAPP) designed to navigate real-world financial applications. The CFData comprising both a pre-training dataset and a supervised fine-tuning dataset, where the pre-training dataset collates Chinese financial data and analytics, alongside a smaller subset of general-purpose text with 584M documents and 141B tokens in total, and the supervised fine-tuning dataset is tailored for six distinct financial tasks, embodying various facets of financial analysis and decision-making with 1.5M instruction pairs and 1.5B tokens in total. The CFLLM, which is based on InternLM-7B to balance the model capability and size, is trained on CFData in two stage, continued pre-training and supervised fine-tuning. The CFAPP is centered on large language models (LLMs) and augmented with additional modules to ensure multifaceted functionality in real-world application. Our codes are released at https://github.com/TongjiFinLab/CFGPT.Comment: 12 pages, 5 figure
    • …
    corecore