976 research outputs found

    Learning to Extract Coherent Summary via Deep Reinforcement Learning

    Full text link
    Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable.Comment: 8 pages, 1 figure, presented at AAAI-201

    Semantic Parsing by Large Language Models for Intricate Updating Strategies of Zero-Shot Dialogue State Tracking

    Full text link
    Zero-shot Dialogue State Tracking (DST) addresses the challenge of acquiring and annotating task-oriented dialogues, which can be time-consuming and costly. However, DST extends beyond simple slot-filling and requires effective updating strategies for tracking dialogue state as conversations progress. In this paper, we propose ParsingDST, a new In-Context Learning (ICL) method, to introduce additional intricate updating strategies in zero-shot DST. Our approach reformulates the DST task by leveraging powerful Large Language Models (LLMs) and translating the original dialogue text to JSON through semantic parsing as an intermediate state. We also design a novel framework that includes more modules to ensure the effectiveness of updating strategies in the text-to-JSON process. Experimental results demonstrate that our approach outperforms existing zero-shot DST methods on MultiWOZ, exhibiting significant improvements in Joint Goal Accuracy (JGA) and slot accuracy compared to existing ICL methods. Our code has been released.Comment: Accepted to the Findings of EMNLP 2023 (Short Paper

    QuERLoc: Towards Next-Generation Localization with Quantum-Enhanced Ranging

    Full text link
    Remarkable advances have been achieved in localization techniques in past decades, rendering it one of the most important technologies indispensable to our daily lives. In this paper, we investigate a novel localization approach for future computing by presenting QuERLoc, the first study on localization using quantum-enhanced ranging. By fine-tuning the evolution of an entangled quantum probe, quantum ranging can output the information integrated in the probe as a specific mapping of distance-related parameters. QuERLoc is inspired by this unique property to measure a special combination of distances between a target sensor and multiple anchors within one single physical measurement. Leveraging this capability, QuERLoc settles two drawbacks of classical localization approaches: (i) the target-anchor distances must be measured individually and sequentially, and (ii) the resulting optimization problems are non-convex and are sensitive to noise. We first present the theoretical formulation of preparing the probing quantum state and controlling its dynamic to induce a convexified localization problem, and then solve it efficiently via optimization. We conduct extensive numerical analysis of QuERLoc under various settings. The results show that QuERLoc consistently outperforms classical approaches in accuracy and closely follows the theoretical lowerbound, while maintaining low time complexity. It achieves a minimum reduction of 73% in RMSE and 97.6% in time consumption compared to baselines. By introducing range-based quantum localization to the mobile computing community and showing its superior performance, QuERLoc sheds light on next-generation localization technologies and opens up new directions for future research

    Data augmentation and semi-supervised learning for deep neural networks-based text classifier

    Get PDF
    User feedback is essential for understanding user needs. In this paper, we use free-text obtained from a survey on sleep-related issues to build a deep neural networks-based text classifier. However, to train the deep neural networks model, a lot of labelled data is needed. To reduce manual data labelling, we propose a method which is a combination of data augmentation and pseudo-labelling: data augmentation is applied to labelled data to increase the size of the initial train set and then the trained model is used to annotate unlabelled data with pseudo-labels. The result shows that the model with the data augmentation achieves macro-averaged f1 score of 65.2% while using 4,300 training data, whereas the model without data augmentation achieves macro-averaged f1 score of 68.2% with around 14,000 training data. Furthermore, with the combination of pseudo-labelling, the model achieves macro-averaged f1 score of 62.7% with only using 1,400 training data with labels. In other words, with the proposed method we can reduce the amount of labelled data for training while achieving relatively good performance

    SimuQ: A Framework for Programming Quantum Hamiltonian Simulation with Analog Compilation

    Full text link
    Quantum Hamiltonian simulation, which simulates the evolution of quantum systems and probes quantum phenomena, is one of the most promising applications of quantum computing. Recent experimental results suggest that Hamiltonian-oriented analog quantum simulation would be advantageous over circuit-oriented digital quantum simulation in the Noisy Intermediate-Scale Quantum (NISQ) machine era. However, programming analog quantum simulators is much more challenging due to the lack of a unified interface between hardware and software. In this paper, we design and implement SimuQ, the first framework for quantum Hamiltonian simulation that supports Hamiltonian programming and pulse-level compilation to heterogeneous analog quantum simulators. Specifically, in SimuQ, front-end users specify the target quantum system with Hamiltonian Modeling Language, and the Hamiltonian-level programmability of analog quantum simulators is specified through a new abstraction called the abstract analog instruction set (AAIS) and programmed in AAIS Specification Language by hardware providers. Through a solver-based compilation, SimuQ generates executable pulse schedules for real devices to simulate the evolution of desired quantum systems, which is demonstrated on superconducting (IBM), neutral-atom (QuEra), and trapped-ion (IonQ) quantum devices. Moreover, we demonstrate the advantages of exposing the Hamiltonian-level programmability of devices with native operations or interaction-based gates and establish a small benchmark of quantum simulation to evaluate SimuQ's compiler with the above analog quantum simulators.Comment: 34 pages, 15 figures, 3 tables. Appears in POPL 2024. The code is available at https://github.com/PicksPeng/SimuQ. A website is available at https://pickspeng.github.io/SimuQ

    Training Adaptive Computation for Open-Domain Question Answering with Computational Constraints

    Get PDF
    Adaptive Computation (AC) has been shown to be effective in improving the efficiency of Open-Domain Question Answering (ODQA) systems. However, current AC approaches require tuning of all model parameters, and training state-of-the-art ODQA models requires significant computational resources that may not be available for most researchers. We propose Adaptive Passage Encoder, an AC method that can be applied to an existing ODQA model and can be trained efficiently on a single GPU. It keeps the parameters of the base ODQA model fixed, but it overrides the default layer-by-layer computation of the encoder with an AC policy that is trained to optimise the computational efficiency of the model. Our experimental results show that our method improves upon a state-of-the-art model on two datasets, and is also more accurate than previous AC methods due to the stronger base ODQA model. All source code and datasets are available at https://github.com/uclnlp/APE.Comment: 7 pages, 1 figure, to be published in ACL-IJCNLP 202
    • …
    corecore