254 research outputs found

    An application of the Maslov complex germ method to the 1D nonlocal Fisher-KPP equation

    Full text link
    A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the 1D nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-Kolmogorov-Petrovskii-Piskunov equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.Comment: 28 pages, version accepted for publication in Int. J. Geom. Methods Mod. Phy

    The Trajectory-Coherent Approximation and the System of Moments for the Hartree-Type Equation

    Full text link
    The general construction of quasi-classically concentrated solutions to the Hartree-type equation, based on the complex WKB-Maslov method, is presented. The formal solutions of the Cauchy problem for this equation, asymptotic in small parameter \h (\h\to0), are constructed with a power accuracy of O(\h^{N/2}), where N is any natural number. In constructing the quasi-classically concentrated solutions, a set of Hamilton-Ehrenfest equations (equations for middle or centered moments) is essentially used. The nonlinear superposition principle has been formulated for the class of quasi-classically concentrated solutions of the Hartree-type equations. The results obtained are exemplified by the one-dimensional equation Hartree-type with a Gaussian potential.Comments: 6 pages, 4 figures, LaTeX Report no: Subj-class: Accelerator PhysicsComment: 36 pages, LaTeX-2

    Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity

    Get PDF
    The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-Kolmogorov equations is considered. Illustrative examples of the one-dimensional symmetry operators are presented.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation

    Full text link
    We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained

    Photon recoil momentum in a Bose-Einstein condensate of a dilute gas

    Get PDF
    We develop a "minimal" microscopic model to describe a two-pulse-Ramsay-interferometer-based scheme of measurement of the photon recoil momentum in a Bose-Einstein condensate of a dilute gas [Campbell et al., Phys. Rev. Lett. 94, 170403 (2005)]. We exploit the truncated coupled Maxwell-Schroedinger equations to elaborate the problem. Our approach provides a theoretical tool to reproduce essential features of the experimental results. Additionally, we enable to calculate the quantum-mechanical mean value of the recoil momentum and its statistical distribution that provides a detailed information about the recoil event.Comment: 6 pages, 4 figure
    corecore