72 research outputs found

    A nearly complete database on the records and ecology of the rarest boreal tiger moth from 1840s to 2020

    Get PDF
    Global environmental changes may cause dramatic insect declines but over century-long time series of certain species’ records are rarely available for scientific research. The Menetries’ Tiger Moth (Arctia menetriesii) appears to be the most enigmatic example among boreal insects. Although it occurs throughout the entire Eurasian taiga biome, it is so rare that less than 100 specimens were recorded since its original description in 1846. Here, we present the database, which contains nearly all available information on the species’ records collected from 1840s to 2020. The data on A. menetriesii records (N = 78) through geographic regions, environments, and different timeframes are compiled and unified. The database may serve as the basis for a wide array of future research such as the distribution modeling and predictions of range shifts under climate changes. It represents a unique example of a more than century-long dataset of distributional, ecological, and phenological data designed for an exceptionally rare but widespread boreal insect, which primarily occurs in hard-to-reach, uninhabited areas of Eurasia.Peer reviewe

    TRPM2-mediated rise in mitochondrial Zn2+ promotes palmitate-induced mitochondrial fission and pancreatic β-cell death in rodents

    No full text
    Rise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C16-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear. Using the INS1-832/13 β-cell line, here we demonstrate that palmitate generates the ROS required for mitochondrial fission by activating NOX (NADPH oxidase)-2. More importantly, we show that chemical inhibition, RNAi-mediated silencing and knockout of ROS-sensitive TRPM (transient receptor potential melastatin)-2 channels prevent palmitate-induced mitochondrial fission. Although TRPM2 activation affects the intracellular dynamics of Ca2+ and Zn2+, chelation of Zn2+ alone was sufficient to prevent mitochondrial fission. Consistent with the role of Zn2+, palmitate caused a rise in mitochondrial Zn2+, leading to Zn2+-dependent mitochondrial recruitment of Drp-1 (a protein that catalyses mitochondrial fission) and loss of mitochondrial membrane potential. In agreement with the previous reports, Ca2+ caused Drp-1 recruitment, but it failed to induce mitochondrial fission in the absence of Zn2+. These results indicate a novel role for Zn2+ in mitochondrial dynamics. Inhibition or knockout of TRPM2 channels in mouse islets and RNAi-mediated silencing of TRPM2 expression in human islets prevented FFA/cytokine-induced β-cell death, findings that are consistent with the role of abnormal mitochondrial fission in cell death. To conclude, our results reveal a novel, potentially druggable signalling pathway for FFA-induced β-cell death. The cascade involves NOX-2-dependent production of ROS, activation of TRPM2 channels, rise in mitochondrial Zn2+, Drp-1 recruitment and abnormal mitochondrial fission

    A case of psoriasiform syphilid (from clinical practice)

    No full text
    The current article analyzes a clinical case of general psoriasis-form syphilid in a 28-year patient. Attention is paid to combination of exudative psoriasis and syphilis in in a sex partner. Problems of differential diagnosis for clinical evidence of secondary syphilis and psoriasis were analyzed
    • …
    corecore