198 research outputs found
Adsorption and two-body recombination of atomic hydrogen on He-He mixture films
We present the first systematic measurement of the binding energy of
hydrogen atoms to the surface of saturated He-He mixture films.
is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the
population of the ground surface state of He grows from zero to
cm, yielding the value K cm
for the mean-field parameter of H-He interaction in 2D. The experiments
were carried out with overall He concentrations ranging from 0.1 ppm to 5 %
as well as with commercial and isotopically purified He at temperatures
70...400 mK. Measuring by ESR the rate constants and for
second-order recombination of hydrogen atoms in hyperfine states and we
find the ratio to be independent of the He content and to
grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys.
Rev. Let
Bose-Einstein condensation of quasiparticles in graphene
The collective properties of different quasiparticles in various graphene
based structures in high magnetic field have been studied. We predict
Bose-Einstein condensation (BEC) and superfluidity of 2D spatially indirect
magnetoexcitons in two-layer graphene. The superfluid density and the
temperature of the Kosterlitz-Thouless phase transition are shown to be
increasing functions of the excitonic density but decreasing functions of
magnetic field and the interlayer separation. The instability of the ground
state of the interacting 2D indirect magnetoexcitons in a slab of superlattice
with alternating electron and hole graphene layers (GLs) is established. The
stable system of indirect 2D magnetobiexcitons, consisting of pair of indirect
excitons with opposite dipole moments, is considered in graphene superlattice.
The superfluid density and the temperature of the Kosterlitz-Thouless phase
transition for magnetobiexcitons in graphene superlattice are obtained.
Besides, the BEC of excitonic polaritons in GL embedded in a semiconductor
microcavity in high magnetic field is predicted. While superfluid phase in this
magnetoexciton polariton system is absent due to vanishing of
magnetoexciton-magnetoexciton interaction in a single layer in the limit of
high magnetic field, the critical temperature of BEC formation is calculated.
The essential property of magnetoexcitonic systems based on graphene (in
contrast, e.g., to a quantum well) is stronger influence of magnetic field and
weaker influence of disorder. Observation of the BEC and superfluidity of 2D
quasiparticles in graphene in high magnetic field would be interesting
confirmation of the phenomena we have described.Comment: 13 pages, 5 figure
Subexponential estimations in Shirshov's height theorem (in English)
In 1993 E. I. Zelmanov asked the following question in Dniester Notebook:
"Suppose that F_{2, m} is a 2-generated associative ring with the identity
x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential
growth?" We show that the nilpotency degree of l-generated associative algebra
with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l
(nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by
this result. It is the consequence of one fact, which is based on combinatorics
of words. Let l, n and d>n be positive integers. Then all the words over
alphabet of cardinality l which length is greater than Psi(n,d,l) are either
n-divided or contain d-th power of subword, where a word W is n-divided, if it
can be represented in the following form W=W_0 W_1...W_n such that W_1 >'
W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov
proved that the set of non n-divided words over alphabet of cardinality l has
bounded height h over the set Y consisting of all the words of degree <n.
Original Shirshov's estimation was just recursive, in 1982 double exponent was
obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation.
We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our
proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link
arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55
Oscillations of Induced Magnetization in Superconductor-Ferromagnet Heterostructures
We study a change in the spin magnetization of a superconductor-ferromagnet
(SF) heterostructure, when temperature is lowered below the superconducting
transition temperature. It is assumed that the SF interface is smooth on the
atomic scale and the mean free path is not too short. Solving the Eilenberger
equation we show that the spin magnetic moment induced in the superconductor is
an oscillating sign-changing function of the product of the exchange field
and the thickness of the ferromagnet. Therefore the total spin magnetic
moment of the system in the superconducting state can be not only smaller
(screening) but also greater (anti-screening) than that in the normal state, in
contrast with the case of highly disordered (diffusive) systems, where only
screening is possible. This surprising effect is due to peculiar periodic
properties of localized Andreev states in the system. It is most pronounced in
systems with ideal ballistic transport (no bulk disorder in the samples, smooth
ideally transparent interface), however these ideal conditions are not crucial
for the very existence of the effect. We show that oscillations exist (although
suppressed) even for arbitrary low interface transparency and in the presence
of bulk disorder, provided that ( -- mean free path). At
low interface transparency we solve the problem for arbitrary strength of
disorder and obtain oscillating magnetization in ballistic regime () and nonoscillating magnetization in diffusive one () as
limiting cases of one formula.Comment: 10 pages, 2 figures, accepted for publication in Phys. Rev.
Surface impedance of superconductors with magnetic impurities
Motivated by the problem of the residual surface resistance of the
superconducting radio-frequency (SRF) cavities, we develop a microscopic theory
of the surface impedance of s-wave superconductors with magnetic impurities. We
analytically calculate the current response function and surface impedance for
a sample with spatially uniform distribution of impurities, treating magnetic
impurities in the framework of the Shiba theory. The obtained general
expressions hold in a wide range of parameter values, such as temperature,
frequency, mean free path, and exchange coupling strength. This generality, on
the one hand, allows for direct numerical implementation of our results to
describe experimental systems (SRF cavities, superconducting qubits) under
various practically relevant conditions. On the other hand, explicit analytical
expressions can be obtained in a number of limiting cases, which makes possible
further theoretical investigation of certain regimes. As a feature of key
relevance to SRF cavities, we show that in the regime of "gapless
superconductivity" the surface resistance exhibits saturation at zero
temperature. Our theory thus explicitly demonstrates that magnetic impurities,
presumably contained in the oxide surface layer of the SRF cavities, provide a
microscopic mechanism for the residual resistance.Comment: 9 pages, 3 figs; v2: published versio
Measurement of the neutron lifetime using a gravitational trap and a low-temperature Fomblin coating
We present a new value for the neutron lifetime of 878.5 +- 0.7 stat. +- 0.3
syst. This result differs from the world average value (885.7 +- 0.8 s) by 6.5
standard deviations and by 5.6 standard deviations from the previous most
precise result. However, this new value for the neutron lifetime together with
a beta-asymmetry in neutron decay, Ao, of -0.1189(7) is in a good agreement
with the Standard Model.Comment: 11 pages, 9 figures; extended content with some correction
Neutron lifetime measurements using gravitationally trapped ultracold neutrons
Our experiment using gravitationally trapped ultracold neutrons (UCN) to
measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a
material bottle covered with perfluoropolyether. The neutron lifetime was
deduced from comparison of UCN losses in the traps with different
surface-to-volume ratios. The precise value of the neutron lifetime is of
fundamental importance to particle physics and cosmology. In this experiment,
the UCN storage time is brought closer to the neutron lifetime than in any
experiments before:the probability of UCN losses from the trap was only 1% of
that for neutron beta decay. The neutron lifetime
obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental
measurement to date.Comment: 38 pages, 19 figures,changed conten
BLR kinematics and Black Hole Mass in Markarian 6
We present results of the optical spectral and photometric observations of
the nucleus of Markarian 6 made with the 2.6-m Shajn telescope at the Crimean
Astrophysical Observatory. The continuum and emission Balmer line intensities
varied more than by a factor of two during 1992-2008. The lag between the
continuum and Hbeta emission line flux variations is 21.1+-1.9 days. For the
Halpha line the lag is about 27 days but its uncertainty is much larger. We use
Monte-Carlo simulation of the random time series to check the effect of our
data sampling on the lag uncertainties and we compare our simulation results
with those obtained by random subset selection (RSS) method of Peterson et al.
(1998). The lag in the high-velocity wings are shorter than in the line core in
accordance with the virial motions. However, the lag is slightly larger in the
blue wing than in the red wing. This is a signature of the infall gas motion.
Probably the BLR kinematic in the Mrk 6 nucleus is a combination of the
Keplerian and infall motions. The velocity-delay dependence is similar for
individual observational seasons. The measurements of the Hbeta line width in
combination with the reverberation lag permits us to determine the black hole
mass, M_BH=(1.8+-0.2)x10^8 M_sun. This result is consistent with the AGN
scaling relationships between the BLR radius and the optical continuum
luminosity (R_BLR is proportional to L^0.5) as well as with the black-hole
mass-luminosity relationship (M_BH-L) under the Eddington luminosity ratio for
Mrk 6 to be L_bol/L_Edd ~ 0.01.Comment: 17 pages, 10 figures, accepted for publication in MNRA
- …