65 research outputs found

    Search for an exotic S=-2, Q=-2 baryon resonance at a mass near 1862 MeV in quasi-real photoproduction

    Full text link
    A search for an exotic baryon resonance with S=2,Q=2S=-2, Q=-2 has been performed in quasi-real photoproduction on a deuterium target through the decay channel ΞπΛππpπππ\Xi^- \pi^- \to \Lambda \pi^- \pi^- \to p \pi^- \pi^- \pi^-. No evidence for a previously reported Ξ(1860)\Xi^{--}(1860) resonance is found in the Ξπ\Xi^- \pi^-invariant mass spectrum. An upper limit for the photoproduction cross section of 2.1 nb is found at the 90% confidence level. The photoproduction cross section for the Ξ0(1530)\Xi^{0}(1530) is found to be between 9 and 24 nb

    Evidence for a narrow |S|=1 baryon state at a mass of 1528 MeV in quasi-real photoproduction

    Get PDF
    Evidence for a narrow baryon state is found in quasi-real photoproduction on a deuterium target through the decay channel p K^0_S --> p pi^+ pi^-. A peak is observed in the p K^0_S invariant mass spectrum at 1528 +/- 2.6 (stat) +/-2.1 (syst) MeV. Depending on the background model,the naive statistical significance of the peak is 4--6 standard deviations and its width may be somewhat larger than the experimental resolution of sigma=4.3 -- 6.2 MeV. This state may be interpreted as the predicted S=+1 exotic Theta^{+}(uuddbar(s)) pentaquark baryon. No signal for an hypothetical Theta^{++} baryon was observed in the pK^+ invariant mass distribution. The absence of such a signal indicates that an isotensor Theta is excluded and an isovector Theta is unlikely.Comment: 8 pages, 4 figure

    The HERMES Polarized Hydrogen and Deuterium Gas Target in the HERA Electron Storage Ring

    Full text link
    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

    >

    No full text
    corecore