82 research outputs found

    Decorated Shastry-Sutherland lattice in the spin-1/2 magnet CdCu2(BO3)2

    Get PDF
    We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase et al., Phys. Rev. B 80, 104405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density-functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory, as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling J_d within the structural Cu2O6 dimers, two interdimer couplings J_t1 and J_t2, forming magnetic tetramers, and a ferromagnetic coupling J_it between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings J_d : J_t1 : J_t2 : J_it = 1 : 0.20 : 0.45 : -0.30, with J_d of about 178 K. The inequivalence of J_t1 and J_t2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.Comment: 16 pages, 13 figures, 2 tables. Published version with additional QMC dat

    Two-gap superconductivity in Mo8_{8}Ga41_{41} and its evolution upon the V substitution

    Full text link
    Zero-field and transverse-field muon spin rotation/relaxation (μ\muSR) experiments were undertaken in order to elucidate microscopic properties of a strongly-coupled superconductor Mo8_{8}Ga41_{41} with Tc=9.8T_{\text{c}}=9.8 K. The upper critical field extracted from the transverse-field μ\muSR data exhibits significant reduction with respect to the data from thermodynamic measurements indicating the coexistence of two independent length scales in the superconducting state. Accordingly, the temperature-dependent magnetic penetration depth of Mo8_{8}Ga41_{41} is described using the model, in which two s-wave superconducting gaps are assumed. The V for Mo substitution in the parent compound leads to the complete suppression of one superconducting gap, and Mo7_{7}VGa41_{41} is well described within the single s-wave gap scenario. The reduction in the superfluid density and the evolution of the low-temperature resistivity upon the V substitution indicate the emergence of a competing state in Mo7_{7}VGa41_{41} that may be responsible for the closure of one of the superconducting gaps

    Antiferromagnetic ground state in the MnGa4_4 intermetallic compound

    Full text link
    Magnetism of the binary intermetallic compound MnGa4_4 is re-investigated. Band-structure calculations predict antiferromagnetic behavior in contrast to Pauli paramagnetism reported previously. Magnetic susceptibility measurements on single crystals indeed reveal an antiferromagnetic transition at TN=393T_N=393 K. Neutron powder diffraction and 69,71^{69,71}Ga nuclear quadrupole resonance spectroscopy show collinear antiferromagnetic order with magnetic moments alligned along the [111] direction of the cubic unit cell. The magnetic moment of 0.80(3)μB\mu_B at 1.5 K extracted from the neutron data is in good agreement with the band-structure results

    Hindered magnetic order from mixed dimensionalities in CuP2_2O6_6

    Get PDF
    We present a combined experimental and theoretical study of the spin-1/2 compound CuP2_2O6_6 that features a network of two-dimensional (2D) antiferromagnetic (AFM) square planes, interconnected via one-dimensional (1D) AFM spin chains. Magnetic susceptibility, high-field magnetization, and electron spin resonance (ESR) data, as well as microscopic density-functional band-structure calculations and subsequent quantum Monte-Carlo simulations, show that the coupling J2DJ_{2D}\sim 40 K in the layers is an order of magnitude larger than J1DJ_{1D}\sim 4 K in the chains. Below TNT_N\sim 8 K, CuP2_2O6_6 develops long-range order (LRO), as evidenced by a weak net moment on the 2D planes induced by anisotropic magnetic interactions of Dzyaloshinsky-Moriya type. A striking feature of this 3D ordering transition is that the 1D moments grow significantly slower than the ones on the 2D layers, which is evidenced by the persistent paramagnetic ESR signal below TNT_N. Compared to typical quasi-2D magnets, the ordering temperature of CuP2_2O6_6 TN/J2DT_N/J_{2D}\sim 0.2 is unusually low, showing that weakly coupled spins sandwiched between 2D magnetic units effectively decouple these units and impede the long-range ordering.Comment: 11 pages, 12 figures, 1 table; published version with few additional citations added and misprints fixe

    Magnetism of coupled spin tetrahedra in ilinskite-type KCu5_{5}O2_2(SeO3_3)2_2Cl3_3

    Get PDF
    Synthesis, thermodynamic properties, and microscopic magnetic model of ilinskite-type KCu5_{5}O2_2(SeO3_3)2_2Cl3_3 built by corner-sharing Cu4_4 tetrahedra are reported, and relevant magnetostructural correlations are discussed. Quasi-one-dimensional magnetic behavior with the short-range order around 50\,K and the absence of long-range order down to at least 2\,K is observed experimentally and explained in terms of weakly coupled spin ladders (tubes) with a complex topology formed upon fragmentation of the tetrahedral network. This fragmentation is rooted in the non-trivial effect of the SeO3_3 groups that render the Cu--O--Cu superexchange strongly ferromagnetic.Comment: 9 pages, 7 figure

    Superposition of ferromagnetic and antiferromagnetic spin chains in the quantum magnet BaAg2Cu[VO4]2

    Full text link
    Based on density functional theory band structure calculations, quantum Monte-Carlo simulations, and high-field magnetization measurements, we address the microscopic magnetic model of BaAg2Cu[VO4]2 that was recently proposed as a spin-1/2 anisotropic triangular lattice system. We show that the actual physics of this compound is determined by a peculiar superposition of ferromagnetic and antiferromagnetic uniform spin chains with nearest-neighbor exchange couplings of Ja(1) ~ -19 K and Ja(2) ~ 9.5 K, respectively. The two chains featuring different types of the magnetic exchange perfectly mimic the specific heat of a triangular spin lattice, while leaving a clear imprint on the magnetization curve that is incompatible with the triangular-lattice model. Both ferromagnetic and antiferromagnetic spin chains run along the crystallographic 'a' direction, and slightly differ in the mutual arrangement of the magnetic CuO4 plaquettes and non-magnetic VO4 tetrahedra. These subtle structural details are, therefore, crucial for the ferromagnetic or antiferromagnetic nature of the exchange couplings, and put forward the importance of comprehensive microscopic modeling for a proper understanding of quantum spin systems in transition-metal compounds.Comment: 9 pages, 9 figures, 2 tables (published version, few citations added

    Magnetization and spin dynamics of the spin S=1/2 hourglass nanomagnet Cu5(OH)2(NIPA)4*10H2O

    Get PDF
    We report a combined experimental and theoretical study of the spin S=1/2 nanomagnet Cu5(OH)2(NIPA)4*10H2O (Cu5-NIPA). Using thermodynamic, electron spin resonance and 1H nuclear magnetic resonance measurements on one hand, and ab initio density-functional band-structure calculations, exact diagonalizations and a strong coupling theory on the other, we derive a microscopic magnetic model of Cu5-NIPA and characterize the spin dynamics of this system. The elementary five-fold Cu2+ unit features an hourglass structure of two corner-sharing scalene triangles related by inversion symmetry. Our microscopic Heisenberg model comprises one ferromagnetic and two antiferromagnetic exchange couplings in each triangle, stabilizing a single spin S=1/2 doublet ground state (GS), with an exactly vanishing zero-field splitting (by Kramer's theorem), and a very large excitation gap of \Delta~68 K. Thus, Cu5-NIPA is a good candidate for achieving long electronic spin relaxation (T1) and coherence (T2) times at low temperatures, in analogy to other nanomagnets with low-spin GS's. Of particular interest is the strongly inhomogeneous distribution of the GS magnetic moment over the five Cu2+ spins. This is a purely quantum-mechanical effect since, despite the non-frustrated nature of the magnetic couplings, the GS is far from the classical collinear ferrimagnetic configuration. Finally, Cu5-NIPA is a rare example of a S=1/2 nanomagnet showing an enhancement in the nuclear spin-lattice relaxation rate 1/T1 at intermediate temperatures.Comment: 18 pages, 16 figures, 3 table

    Hindered magnetic order from mixed dimensionalities in CuP2O6

    Get PDF
    We present a combined experimental and theoretical study of the spin-12 compound CuP2O6 that features a network of two-dimensional (2D) antiferromagnetic (AFM) square planes, interconnected via one-dimensional (1D) AFM spin chains. Magnetic susceptibility, high-field magnetization, and electron spin resonance (ESR) data, as well as microscopic density-functional band-structure calculations and subsequent quantum Monte Carlo simulations, show that the coupling J2D40 K in the layers is an order of magnitude larger than J1D3 K in the chains. Below TN8 K, CuP2O6 develops long-range order, as evidenced by a weak net moment on the 2D planes induced by anisotropic magnetic interactions of Dzyaloshinsky-Moriya type. A striking feature of this 3D ordering transition is that the 1D moments grow significantly slower than the ones on the 2D units, which is evidenced by the persistent paramagnetic ESR signal below TN. Compared to typical quasi-2D magnets, the ordering temperature of CuP2O6 TN/J2D0.2 is unusually low, showing that weakly coupled spins sandwiched between 2D magnetic units effectively decouple these units and impede the long-range ordering
    corecore