27,305 research outputs found

    APPLE: Approximate Path for Penalized Likelihood Estimators

    Full text link
    In high-dimensional data analysis, penalized likelihood estimators are shown to provide superior results in both variable selection and parameter estimation. A new algorithm, APPLE, is proposed for calculating the Approximate Path for Penalized Likelihood Estimators. Both the convex penalty (such as LASSO) and the nonconvex penalty (such as SCAD and MCP) cases are considered. The APPLE efficiently computes the solution path for the penalized likelihood estimator using a hybrid of the modified predictor-corrector method and the coordinate-descent algorithm. APPLE is compared with several well-known packages via simulation and analysis of two gene expression data sets.Comment: 24 pages, 9 figure

    Revisiting the problem of audio-based hit song prediction using convolutional neural networks

    Full text link
    Being able to predict whether a song can be a hit has impor- tant applications in the music industry. Although it is true that the popularity of a song can be greatly affected by exter- nal factors such as social and commercial influences, to which degree audio features computed from musical signals (whom we regard as internal factors) can predict song popularity is an interesting research question on its own. Motivated by the recent success of deep learning techniques, we attempt to ex- tend previous work on hit song prediction by jointly learning the audio features and prediction models using deep learning. Specifically, we experiment with a convolutional neural net- work model that takes the primitive mel-spectrogram as the input for feature learning, a more advanced JYnet model that uses an external song dataset for supervised pre-training and auto-tagging, and the combination of these two models. We also consider the inception model to characterize audio infor- mation in different scales. Our experiments suggest that deep structures are indeed more accurate than shallow structures in predicting the popularity of either Chinese or Western Pop songs in Taiwan. We also use the tags predicted by JYnet to gain insights into the result of different models.Comment: To appear in the proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

    Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.

    Get PDF
    A Ruddlesden-Popper (RP) type structure is well-known in oxide perovskites and is related to many interesting properties such as superconductivity and ferroelectricity. However, the RP phase has not yet been discovered in inorganic halide perovskites. Here, we report the direct observation of unusual structure in two-dimensional CsPbBr3 nanosheets which could be interpreted as the RP phase based on model simulations. Structural details of the plausible RP domains and domain boundaries between the RP and conventional perovskite phases have been revealed on the atomic level using aberration-corrected scanning transmission electron microscopy. The finding marks a major advance toward future inorganic halide RP phase synthesis and theoretical modeling, as well as unraveling their structure-property relationship

    Generating Music Medleys via Playing Music Puzzle Games

    Full text link
    Generating music medleys is about finding an optimal permutation of a given set of music clips. Toward this goal, we propose a self-supervised learning task, called the music puzzle game, to train neural network models to learn the sequential patterns in music. In essence, such a game requires machines to correctly sort a few multisecond music fragments. In the training stage, we learn the model by sampling multiple non-overlapping fragment pairs from the same songs and seeking to predict whether a given pair is consecutive and is in the correct chronological order. For testing, we design a number of puzzle games with different difficulty levels, the most difficult one being music medley, which requiring sorting fragments from different songs. On the basis of state-of-the-art Siamese convolutional network, we propose an improved architecture that learns to embed frame-level similarity scores computed from the input fragment pairs to a common space, where fragment pairs in the correct order can be more easily identified. Our result shows that the resulting model, dubbed as the similarity embedding network (SEN), performs better than competing models across different games, including music jigsaw puzzle, music sequencing, and music medley. Example results can be found at our project website, https://remyhuang.github.io/DJnet.Comment: Accepted at AAAI 201

    Pop Music Highlighter: Marking the Emotion Keypoints

    Get PDF
    The goal of music highlight extraction is to get a short consecutive segment of a piece of music that provides an effective representation of the whole piece. In a previous work, we introduced an attention-based convolutional recurrent neural network that uses music emotion classification as a surrogate task for music highlight extraction, for Pop songs. The rationale behind that approach is that the highlight of a song is usually the most emotional part. This paper extends our previous work in the following two aspects. First, methodology-wise we experiment with a new architecture that does not need any recurrent layers, making the training process faster. Moreover, we compare a late-fusion variant and an early-fusion variant to study which one better exploits the attention mechanism. Second, we conduct and report an extensive set of experiments comparing the proposed attention-based methods against a heuristic energy-based method, a structural repetition-based method, and a few other simple feature-based methods for this task. Due to the lack of public-domain labeled data for highlight extraction, following our previous work we use the RWC POP 100-song data set to evaluate how the detected highlights overlap with any chorus sections of the songs. The experiments demonstrate the effectiveness of our methods over competing methods. For reproducibility, we open source the code and pre-trained model at https://github.com/remyhuang/pop-music-highlighter/.Comment: Transactions of the ISMIR vol. 1, no.

    How Many Communities Are There?

    Full text link
    Stochastic blockmodels and variants thereof are among the most widely used approaches to community detection for social networks and relational data. A stochastic blockmodel partitions the nodes of a network into disjoint sets, called communities. The approach is inherently related to clustering with mixture models; and raises a similar model selection problem for the number of communities. The Bayesian information criterion (BIC) is a popular solution, however, for stochastic blockmodels, the conditional independence assumption given the communities of the endpoints among different edges is usually violated in practice. In this regard, we propose composite likelihood BIC (CL-BIC) to select the number of communities, and we show it is robust against possible misspecifications in the underlying stochastic blockmodel assumptions. We derive the requisite methodology and illustrate the approach using both simulated and real data. Supplementary materials containing the relevant computer code are available online.Comment: 26 pages, 3 figure
    • …
    corecore