27,305 research outputs found
APPLE: Approximate Path for Penalized Likelihood Estimators
In high-dimensional data analysis, penalized likelihood estimators are shown
to provide superior results in both variable selection and parameter
estimation. A new algorithm, APPLE, is proposed for calculating the Approximate
Path for Penalized Likelihood Estimators. Both the convex penalty (such as
LASSO) and the nonconvex penalty (such as SCAD and MCP) cases are considered.
The APPLE efficiently computes the solution path for the penalized likelihood
estimator using a hybrid of the modified predictor-corrector method and the
coordinate-descent algorithm. APPLE is compared with several well-known
packages via simulation and analysis of two gene expression data sets.Comment: 24 pages, 9 figure
Revisiting the problem of audio-based hit song prediction using convolutional neural networks
Being able to predict whether a song can be a hit has impor- tant
applications in the music industry. Although it is true that the popularity of
a song can be greatly affected by exter- nal factors such as social and
commercial influences, to which degree audio features computed from musical
signals (whom we regard as internal factors) can predict song popularity is an
interesting research question on its own. Motivated by the recent success of
deep learning techniques, we attempt to ex- tend previous work on hit song
prediction by jointly learning the audio features and prediction models using
deep learning. Specifically, we experiment with a convolutional neural net-
work model that takes the primitive mel-spectrogram as the input for feature
learning, a more advanced JYnet model that uses an external song dataset for
supervised pre-training and auto-tagging, and the combination of these two
models. We also consider the inception model to characterize audio infor-
mation in different scales. Our experiments suggest that deep structures are
indeed more accurate than shallow structures in predicting the popularity of
either Chinese or Western Pop songs in Taiwan. We also use the tags predicted
by JYnet to gain insights into the result of different models.Comment: To appear in the proceedings of 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP
Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
A Ruddlesden-Popper (RP) type structure is well-known in oxide perovskites and is related to many interesting properties such as superconductivity and ferroelectricity. However, the RP phase has not yet been discovered in inorganic halide perovskites. Here, we report the direct observation of unusual structure in two-dimensional CsPbBr3 nanosheets which could be interpreted as the RP phase based on model simulations. Structural details of the plausible RP domains and domain boundaries between the RP and conventional perovskite phases have been revealed on the atomic level using aberration-corrected scanning transmission electron microscopy. The finding marks a major advance toward future inorganic halide RP phase synthesis and theoretical modeling, as well as unraveling their structure-property relationship
Generating Music Medleys via Playing Music Puzzle Games
Generating music medleys is about finding an optimal permutation of a given
set of music clips. Toward this goal, we propose a self-supervised learning
task, called the music puzzle game, to train neural network models to learn the
sequential patterns in music. In essence, such a game requires machines to
correctly sort a few multisecond music fragments. In the training stage, we
learn the model by sampling multiple non-overlapping fragment pairs from the
same songs and seeking to predict whether a given pair is consecutive and is in
the correct chronological order. For testing, we design a number of puzzle
games with different difficulty levels, the most difficult one being music
medley, which requiring sorting fragments from different songs. On the basis of
state-of-the-art Siamese convolutional network, we propose an improved
architecture that learns to embed frame-level similarity scores computed from
the input fragment pairs to a common space, where fragment pairs in the correct
order can be more easily identified. Our result shows that the resulting model,
dubbed as the similarity embedding network (SEN), performs better than
competing models across different games, including music jigsaw puzzle, music
sequencing, and music medley. Example results can be found at our project
website, https://remyhuang.github.io/DJnet.Comment: Accepted at AAAI 201
Pop Music Highlighter: Marking the Emotion Keypoints
The goal of music highlight extraction is to get a short consecutive segment
of a piece of music that provides an effective representation of the whole
piece. In a previous work, we introduced an attention-based convolutional
recurrent neural network that uses music emotion classification as a surrogate
task for music highlight extraction, for Pop songs. The rationale behind that
approach is that the highlight of a song is usually the most emotional part.
This paper extends our previous work in the following two aspects. First,
methodology-wise we experiment with a new architecture that does not need any
recurrent layers, making the training process faster. Moreover, we compare a
late-fusion variant and an early-fusion variant to study which one better
exploits the attention mechanism. Second, we conduct and report an extensive
set of experiments comparing the proposed attention-based methods against a
heuristic energy-based method, a structural repetition-based method, and a few
other simple feature-based methods for this task. Due to the lack of
public-domain labeled data for highlight extraction, following our previous
work we use the RWC POP 100-song data set to evaluate how the detected
highlights overlap with any chorus sections of the songs. The experiments
demonstrate the effectiveness of our methods over competing methods. For
reproducibility, we open source the code and pre-trained model at
https://github.com/remyhuang/pop-music-highlighter/.Comment: Transactions of the ISMIR vol. 1, no.
How Many Communities Are There?
Stochastic blockmodels and variants thereof are among the most widely used
approaches to community detection for social networks and relational data. A
stochastic blockmodel partitions the nodes of a network into disjoint sets,
called communities. The approach is inherently related to clustering with
mixture models; and raises a similar model selection problem for the number of
communities. The Bayesian information criterion (BIC) is a popular solution,
however, for stochastic blockmodels, the conditional independence assumption
given the communities of the endpoints among different edges is usually
violated in practice. In this regard, we propose composite likelihood BIC
(CL-BIC) to select the number of communities, and we show it is robust against
possible misspecifications in the underlying stochastic blockmodel assumptions.
We derive the requisite methodology and illustrate the approach using both
simulated and real data. Supplementary materials containing the relevant
computer code are available online.Comment: 26 pages, 3 figure
- …