6,272 research outputs found

    Enhancing thermoelectric figure-of-merit by low-dimensional electrical transport in phonon-glass crystals

    Full text link
    Low-dimensional electronic and glassy phononic transport are two important ingredients of highly-efficient thermoelectric material, from which two branches of the thermoelectric research emerge. One focuses on controlling electronic transport in the low dimension, while the other on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here, we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystal as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculation and classical molecular dynamics simulation, we show that the π\pi-π\pi stacking Bis-Dithienothiophene molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameter, we obtain a maximum room-temperature figure of merit, ZTZT, of 1.481.48 at optimal doping, thus validating our idea.Comment: Nano Lett.201

    Global Multivariable Control of Permanent Magnet Synchronous Motor for Mechanical Elastic Energy Storage System under Multiclass Nonharmonic External Disturbances

    Get PDF
    For the technology of mechanical elastic energy storage utilizing spiral torsion springs as the energy storage media presented previously, a global multivariable control algorithm based on nonlinear internal model principle under multiclass external disturbances is proposed. The nonlinear external disturbances with nonharmonic periodic characteristics are generated by multiclass nonlinear external systems. New equations of nonlinear internal model are designed to estimate the multiclass external disturbances. On the basis of constructing the control law of nominal system, a state feedback controller is designed to guarantee the closed-loop system globally uniformly bounded, and a Lyapunov function is constructed to theoretically prove the global uniform boundedness of the multivariable closed-loop system signals. The simulation results verify the correctness and effectiveness of the presented algorithm

    Adaptive Robust Backstepping Control of Permanent Magnet Synchronous Motor Chaotic System with Fully Unknown Parameters and External Disturbances

    Get PDF
    The chaotic behavior of permanent magnet synchronous motor is directly related to the parameters of chaotic system. The parameters of permanent magnet synchronous motor chaotic system are frequently unknown. Hence, chaotic control of permanent magnet synchronous motor with unknown parameters is of great significance. In order to make the subject more general and feasible, an adaptive robust backstepping control algorithm is proposed to address the issues of fully unknown parameters estimation and external disturbances inhibition on the basis of associating backstepping control with adaptive control. Firstly, the mathematical model of permanent magnet synchronous motor chaotic system with fully unknown parameters is constructed, and the external disturbances are introduced into the model. Secondly, an adaptive robust backstepping control technology is employed to design controller. In contrast with traditional backstepping control, the proposed controller is more concise in structure and avoids many restricted problems. The stability of the control approach is proved by Lyapunov stability theory. Finally, the effectiveness and correctness of the presented algorithm are verified through multiple simulation experiments, and the results show that the proposed scheme enables making permanent magnet synchronous motor operate away from chaotic state rapidly and ensures the tracking errors to converge to a small neighborhood within the origin rapidly under the full parameters uncertainties and external disturbances
    corecore