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The chaotic behavior of permanent magnet synchronous motor is directly related to the parameters of chaotic system. The
parameters of permanentmagnet synchronousmotor chaotic system are frequently unknown.Hence, chaotic control of permanent
magnet synchronous motor with unknown parameters is of great significance. In order to make the subject more general and
feasible, an adaptive robust backstepping control algorithm is proposed to address the issues of fully unknown parameters
estimation and external disturbances inhibition on the basis of associating backstepping control with adaptive control. Firstly,
the mathematical model of permanent magnet synchronous motor chaotic system with fully unknown parameters is constructed,
and the external disturbances are introduced into the model. Secondly, an adaptive robust backstepping control technology is
employed to design controller. In contrastwith traditional backstepping control, the proposed controller ismore concise in structure
and avoids many restricted problems. The stability of the control approach is proved by Lyapunov stability theory. Finally, the
effectiveness and correctness of the presented algorithm are verified through multiple simulation experiments, and the results
show that the proposed scheme enablesmaking permanentmagnet synchronousmotor operate away from chaotic state rapidly and
ensures the tracking errors to converge to a small neighborhood within the origin rapidly under the full parameters uncertainties
and external disturbances.

1. Introduction

In recent years, the permanent magnet synchronous motor
(PMSM) is utilized widely in various industrial fields due
to its constantly dropping production cost, simple structure,
high torque, and high efficiency. However, Hemati found
that PMSM would generate chaotic behavior with system
parameters entering into a certain region [1]. Previous studies
have shown that the chaotic movement of PMSM will
produce irregular oscillations of torque and speed, exacerbate
current noise, and worsen operation performance and may
even damage the entire drive system. Therefore, research on
PMSM chaos phenomenon has attracted extensive attention
worldwide [2–5], and further studying on the controlmethod
of PMSM chaos is of extreme significance [6–8].

The nonlinear characteristics of PMSM, such as multi-
variability, strong coupling, and high dimension, make it dif-
ficult to control for traditional linear control theory. Hence,

a variety of modern and nonlinear control algorithms are
introduced to suppress PMSM chaotic behavior. In terms of
these control algorithms whether or not relying on the model
parameters, the previous control methods can primarily be
divided into two categories. The first type is on the basis
of accurate model parameters, such as entrainment and
migration control [9], exact feedback linearization control
[10], and decoupling control [11]. However, the accuracy of
these control methods directly depends on PMSM model
parameters; if the system parameters deviate from the rated
values, the control performance will go bad. The second type
is based on unknown parameters, which have become the
research focus of PMSM chaos suppression recently, mainly
including sliding mode variable structure control [12, 13],
fuzzy control [14], and 𝐻

∞
control [15]. However, sliding

mode variable structure control requires uncertain parame-
ters to satisfy certain matching conditions, fuzzy control is
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dependent on the fuzzification of Takagi-Sugeno, and 𝐻
∞

control is inclined to ignore the operating states under special
conditions [16]. In essence, PMSM chaotic system is highly
sensitive to initial states and parameters, and PMSM model
parameters are susceptible to the temperature and humidity
of the surrounding environment. Therefore, PMSM chaotic
repression with unknownmodel parameters has applicability
to a broader field and ismore in linewith reality [17]. Actually,
the adaptive control (AC) provides a natural routine for
PMSM chaotic control with unknown parameters, which has
been presented in literatures [12, 13, 18].

Backstepping control (BC) is one of the most popu-
lar nonlinear control methods newly proposed to address
parameter uncertainty, specifically the uncertainty not sat-
isfying matching condition, which has been successfully
applied to many engineering fields such as motor drive,
temperature control of boiler main steam, and rocket loca-
tion tracking. The core idea of BC is that complex high-
dimensional nonlinear systems are decomposed into many
simple low-dimensional subsystems and virtual control vari-
ables are introduced to backstepping process to design con-
crete controllers. In addition, BC has been successfully
applied to suppress Liu chaotic system [19] and Chen chaotic
system [20]. Therefore, the idea of combining BC with AC
provides a useful and feasible train of thought to control
PMSM chaotic systemwith unknown parameters. Literatures
[21, 22] have exactly practiced this idea.

However, the conventional backstepping approach is con-
fronted with two major problems of solving complicated
“regression matrix” [23] and encountering “explosion of
terms” [24]. In [25], the complexity of regression matrix is
sufficiently manifested, which almost occupies one full page.
Nevertheless, explosion of terms is an inherent shortcoming
and is induced by repeated differentiations of virtual vari-
ables, particularly in design of adaptive backstepping con-
troller [26]. Additionally, integration of BC with AC is fre-
quently facedwith the singularity arising from any estimation
term emerging as a denominator of any control input. The
overparameterization caused by the number of estimations
larger than actual system parameters hinders the conven-
tional adaptive backstepping control.

In addition to the above problems, to the extent of our
knowledge,mostly existing literatures on PMSMchaotic con-
trol only concentrate on the cases of single unknown param-
eter and partial unknown parameters [21, 22], and there is
no way to address the issue of fully unknown parameters.
Furthermore, the existing researches mainly aim at the sit-
uation of sudden power failure during PMSM operation [16];
the existing conclusions lack the generality. Hence, through
combination of BC and AC, not only does this paper study
the control issue of PMSM chaos suppression with fully
unknown parameters, but also the external disturbances are
taken into account in PMSM chaos model. Newly adaptive
updating laws of unknown parameters are designed to totally
estimate unknown parameters of PMSM chaotic model, and
adaptive robust backstepping controllers on the basis of
adaptive estimations and external disturbances are developed
to drive PMSM to escape out of chaotic state quickly, inhibit
the external disturbances, and accomplish the given signals

tracking rapidly.Themethod proposed in this paper expands
the applied range of backstepping control theory in PMSM
chaotic system.Moreover, the study of chaos control problem
with totally unknown parameters and external disturbances
is more general and practical, and the results and conclusions
obtained are more applicable.

2. PMSM Chaotic Model with Fully
Unknown Parameters

For a PMSM, its mathematical model in 𝑑𝑞 axis coordinate
system can be described as follows [16]:
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(1)

where �̑� is the mechanical angular velocity of the rotating
rotor, �̑�

𝑑
and �̑�
𝑞
are 𝑑 axis and 𝑞 axis currents of stator winding,

respectively, �̑�
𝑑
and �̑�

𝑞
are 𝑑 axis and 𝑞 axis voltages of stator

winding, 𝑝 is the number of rotor pole pairs, 𝜙
𝑚
is the flux

generated by permanent magnets, 𝐽 is the moment of inertia,
𝐵 is the viscous damping coefficient, 𝜏

𝑙
is the load torque, 𝑅 is

the phase resistance of the stator windings, and 𝐿
𝑑
and 𝐿

𝑞
are

𝑑 axis and 𝑞 axis inductances of stator winding, respectively.
For a PMSM with uniform air gap, 𝐿

𝑑
= 𝐿
𝑞
. Hence, we use 𝐿

to substitute 𝐿
𝑑
and 𝐿

𝑞
in the following paper.
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] and time scale transformation �̑� = 𝜏𝑡, the
PMSMmathematicalmodel described in (1) can be converted
into dimensionless form as follows:
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where 𝜏 = 𝐿/𝑅, 𝑘 = 2𝐵/3𝑝
2
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As presented in (2), the dynamic performance of PMSM
depends on three parameters 𝛿, 𝛾, and 𝜏

𝑙
. Considering the

most general case, let 𝛿 = 0.2, 𝛾 = 50, 𝜏
𝑙
= 3.2, 𝑢

𝑑
= −0.6,

and 𝑢
𝑞

= 0.8. If the initial state is selected as (𝜔, 𝑖
𝑞
, 𝑖
𝑑
) =

(0, 0, 0), PMSM system will run on a chaotic state and display
the chaotic behavior. A typical chaotic attractor of PMSM is
manifested in Figure 1.

In reality, the three parameters 𝛿, 𝛾, and 𝜏
𝑙
in (2) tend to

be unknownor to have uncertainties resulting fromoperating
conditions. In other words, when all the parameters 𝛿, 𝛾,
and 𝜏
𝑙
cannot be determined, (2) actually represents PMSM

chaotic system model with fully unknown parameters.
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Figure 1: Chaotic attractor of PMSM system.

3. Design of Adaptive Robust Controller with
Backstepping Approach

Taking a more general situation into account, the PMSM
chaotic model described in (2) is immersed by external dis-
turbances. The model can be rewritten as follows:
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(3)

where Δ
1
(x, 𝑡) and Δ

2
(x, 𝑡) represent the external distur-

bances, x indicates the system states, and x = (𝑥
1
, 𝑥
2
, 𝑥
3
) =

(𝜔, 𝑖
𝑞
, 𝑖
𝑑
).

3.1. Control Objective and Assumptions. Control problem in
the paper can be described as follows: for PMSM chaotic
system (3) with fully unknown parameters 𝛿, 𝛾, and 𝜏

𝑙
and

external disturbances Δ
1
and Δ

2
, adaptive laws of unknown

parameters 𝛿, 𝛾, and 𝜏
𝑙
are designed and adaptive robust

controllers 𝑢
𝑑
and 𝑢
𝑞
are constructed to ensure PMSMbreaks

away from chaos rapidly and runs into an expected orbit.
Simultaneously, the fully unknownparameters 𝛿, 𝛾, and 𝜏

𝑙
can

be estimated accurately and the external disturbances can be
inhibited effectively.

For convenience of controller design, the control system
is supposed to hold some reasonable assumptions as follows.

Assumption 1. The state variables for PMSM chaotic system
(𝜔, 𝑖
𝑞
, 𝑖
𝑑
) are observable.

Assumption 2. The external disturbances Δ
𝑖
(x, 𝑡) satisfy the

condition |Δ
𝑖
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𝑖
(x)𝑓
𝑖
(𝑡), 𝑖 = 1, 2, where 𝑑

𝑖
(x) is

a known function, 𝑓
𝑖
(𝑡) is an unknown but bounded time-

varying function, and |𝑓
𝑖
(𝑡)| ≤ 𝑓

𝑖max, where 𝑓
𝑖max is a

constant.

Assumption 3. Thedesired speed and 𝑑 axis current reference
signals 𝜔

∗ and 𝑖
∗

𝑑
and their derivatives are known and

bounded.

The estimated values of unknown system parameters are
described as �̂�, �̂�, and �̂�

𝑙
; then, the estimation errors �̃�, �̃�, and
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can be expressed as follows:
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(4)

3.2. Controller Design. The essence of adaptive robust back-
stepping controller is to design controller through combina-
tion of backstepping method and adaptive approach; then,
a reasonably stable function is built in accordance with
Lyapunov stability theory to guarantee error variables to be
effectively stabilized and meanwhile ensure the output of
closed loop system tracks reference signals quickly. On the
basis of this, the adaptive robust backstepping controller is
designed as follows.

Step 1. For the speed reference signal 𝜔∗, define the tracking
error 𝑒

𝜔
as follows:

𝑒
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Taking PMSM chaotic system model (3) into account, the
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where 𝑘
1
represents the positive control gain.

Through substitution of (10) into (9), (12) can be obtained:
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Lyapunov function 𝑉
1
is selected as follows:
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Step 2. To stabilize the output 𝑞 axis current of PMSM, the
derivative of 𝑒
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Combined with the mathematical model of PMSM chaotic
system, (16) can be further calculated as follows:
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𝛿
𝑒
𝑞

−
�̃�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
⋅ 𝑒
𝜔
) − �̃�
𝑙
+ 𝑘
1
⋅ 𝑒
𝜔
− �̇�
∗

− �̂� ( ̇̂𝜏
𝑙
+ �̈�
∗

) +
�̂�

𝛿
⋅ 𝑘
1
⋅ (𝑖
𝑞
− 𝜔) − �̂� ⋅ 𝑘

1

⋅ (�̂�
𝑙
− �̃�
𝑙
) − �̂� ⋅ 𝑘

1
⋅ �̇�
∗

= −𝑖
𝑞
− 𝜔 ⋅ 𝑖

𝑑
+ �̂� ⋅ 𝜔 − �̃� ⋅ 𝜔 + 𝑢

𝑞
+ Δ
1

−
̇̂
𝛿 (�̂�
𝑙
+ �̇�
∗

− 𝑘
1
⋅ 𝑒
𝜔
) −

1

𝛿
𝑒
𝑞

−
�̃�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
⋅ 𝑒
𝜔
) − �̂�
𝑙
+ 𝑘
1
⋅ 𝑒
𝜔
− �̇�
∗

− �̂� ( ̇̂𝜏
𝑙
+ �̈�
∗

) +
�̂�

𝛿
⋅ 𝑘
1
⋅ (𝑖
𝑞
− 𝜔) − �̂� ⋅ 𝑘

1
⋅ �̂�
𝑙
+ �̂�

⋅ 𝑘
1
⋅ �̃�
𝑙
− �̂� ⋅ 𝑘

1
⋅ �̇�
∗

.

(17)

By substitution of �̂� = �̃� + 𝛿 into (17), the following equation
can be obtained:

̇𝑒
𝑞
= −𝑖
𝑞
− 𝜔 ⋅ 𝑖

𝑑
+ �̂� ⋅ 𝜔 − �̃� ⋅ 𝜔 + 𝑢

𝑞
+ Δ
1

−
̇̂

𝛿 (�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) −

1

𝛿
𝑒
𝑞

−
�̃�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) − �̃�
𝑙
+ 𝑘
1
𝑒
𝜔
− �̇�
∗

− �̂� ( ̇̂𝜏
𝑙
+ �̈�
∗

) +
𝛿 + �̃�

𝛿
⋅ 𝑘
1
⋅ (𝑖
𝑞
− 𝜔) − �̂� ⋅ 𝑘

1
⋅ �̂�
𝑙

+ �̂� ⋅ 𝑘
1
⋅ �̃�
𝑙
− �̂� ⋅ 𝑘

1
⋅ �̇�
∗

= −𝑖
𝑞
− 𝜔 ⋅ 𝑖

𝑑
+ �̂� ⋅ 𝜔 − �̃� ⋅ 𝜔 + 𝑢

𝑞
+ Δ
1

−
̇̂

𝛿 (�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) −

1

𝛿
𝑒
𝑞

−
�̃�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) − �̃�
𝑙
+ 𝑘
1
𝑒
𝜔
− �̇�
∗

− �̂� ( ̇̂𝜏
𝑙
+ �̈�
∗

) + 𝑘
1
⋅ (𝑖
𝑞
− 𝜔) +

�̃�

𝛿
⋅ 𝑘
1
⋅ (𝑖
𝑞
− 𝜔)

− �̂� ⋅ 𝑘
1
⋅ �̂�
𝑙
+ �̂� ⋅ 𝑘

1
⋅ �̃�
𝑙
− �̂� ⋅ 𝑘

1
⋅ �̇�
∗

.

(18)

Lyapunov function 𝑉
2
is chosen as follows:

𝑉
2
= 𝑉
1
+
1

2
𝑒
2

𝑞
. (19)
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Then, the derivative of 𝑉
2
can be described as

�̇�
2
= �̇�
1
+ 𝑒
𝑞
̇𝑒
𝑞
= 𝑒
𝜔
(
1

𝛿
𝑒
𝑞
+
�̂�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) + �̃�
𝑙

− 𝑘
1
𝑒
𝜔
) + 𝑒
𝑞
(−𝑖
𝑞
− 𝜔 ⋅ 𝑖

𝑑
+ �̂� ⋅ 𝜔 − �̃� ⋅ 𝜔 + 𝑢

𝑞

+ Δ
1
−

̇̂
𝛿 (�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) −

1

𝛿
𝑒
𝑞

−
�̃�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) − �̃�
𝑙
+ 𝑘
1
𝑒
𝜔
− �̇�
∗

− �̂� ( ̇̂𝜏
𝑙
+ �̈�
∗

) + 𝑘
1
⋅ (𝑖
𝑞
− 𝜔) +

�̃�

𝛿
⋅ 𝑘
1
⋅ (𝑖
𝑞
− 𝜔)

− �̂� ⋅ 𝑘
1
⋅ �̂�
𝑙
+ �̂� ⋅ 𝑘

1
⋅ �̃�
𝑙
− �̂� ⋅ 𝑘

1
⋅ �̇�
∗

) .

(20)

The first control variable is selected as

𝑢
𝑞
= 𝑢
𝑞𝑠
+ 𝑢
𝑞𝑟
, (21)

where 𝑢
𝑞𝑠

and 𝑢
𝑞𝑟

are the model compensation and robust
control inputs, respectively.

Then, 𝑢
𝑞𝑠
and 𝑢

𝑞𝑟
can be, respectively, chosen as

𝑢
𝑞𝑠

= −𝑘
2
⋅ 𝑒
𝑞
+ 𝑖
𝑞
+ 𝜔 ⋅ 𝑖

𝑑
− �̂� ⋅ 𝜔

+
̇̂

𝛿 (�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) + �̇�
∗

+ �̂� ( ̇̂𝜏
𝑙
+ �̈�
∗

) + �̂�

⋅ 𝑘
1
⋅ �̂�
𝑙
+ �̂� ⋅ 𝑘

𝑟
⋅ �̇�
∗

− 𝑘
1
(𝑖
𝑞
− 𝜔) ,

(22)

𝑢
𝑞𝑟

= −
𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
, (23)

where 𝑘
2
is another positive control gain and 𝜀

1
is a positive

number chosen arbitrarily.
By substitution of (21) and (22) into (20), we can acquire

�̇�
2
= �̇�
1
+ 𝑒
𝑞
̇𝑒
𝑞
= 𝑒
𝜔
(
1

𝛿
𝑒
𝑞
+
�̂�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) + �̃�
𝑙

− 𝑘
1
𝑒
𝜔
) + 𝑒
𝑞
(−𝑘
2
𝑒
𝑞
−

1

𝛿
⋅ 𝑒
𝑞
+ 𝑘
1
𝑒
𝜔
− �̃� ⋅ 𝜔 + 𝑢

𝑞𝑟

+ Δ
1
−
�̃�

𝛿
((�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) − 𝑘
1
⋅ (𝑖
𝑞
− 𝜔))

+ �̃�
𝑙
(�̂� ⋅ 𝑘
1
− 1)) = 𝑒

𝜔
(
1

𝛿
𝑒
𝑞

+
�̂�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) + �̃�
𝑙
− 𝑘
1
𝑒
𝜔
) + 𝑒
𝑞
(−𝑘
2
𝑒
𝑞

−
1

𝛿
⋅ 𝑒
𝑞
+ 𝑘
1
𝑒
𝜔
− �̃� ⋅ 𝜔 −

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1

−
�̃�

𝛿
((�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) − 𝑘
1
⋅ (𝑖
𝑞
− 𝜔))

+ �̃�
𝑙
(�̂� ⋅ 𝑘
1
− 1)) .

(24)

Additionally,

𝑒
𝑞
(−

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1
) = −

𝑑
2

1
(x)

4𝜀
1

𝑒
2

𝑞
+ Δ
1
𝑒
𝑞

≤ −
𝑑
2

1
(x)

4𝜀
1

𝑒
2

𝑞
+ 𝑑
1
(x) 𝑓
1max


𝑒
𝑞



= −(

𝑑
1
(x) 𝑒𝑞



2√𝜀
1

− √𝜀
1
𝑓
1max)

2

+ 𝜀
1
𝑓
2

1max.

(25)

Step 3. Differentiating the tracking error 𝑒
𝑑
of 𝑑 axis current

𝑖
𝑑
, we can get

̇𝑒
𝑑
= ̇𝑖
𝑑
− ̇𝑖
∗

𝑑
= −𝑖
𝑑
+ 𝜔 ⋅ 𝑖

𝑞
+ 𝑢
𝑑
+ Δ
2
− ̇𝑖
∗

𝑑
. (26)

Lyapunov function 𝑉
3
is chosen as

𝑉
3
= 𝑉
2
+
1

2
𝑒
2

𝑑
. (27)

Then, the derivative of 𝑉
3
can be represented as

�̇�
3
= �̇�
2
+ 𝑒
𝑑
̇𝑒
𝑑

= �̇�
2
+ 𝑒
𝑑
(−𝑖
𝑑
+ 𝜔 ⋅ 𝑖

𝑞
+ 𝑢
𝑑
+ Δ
2
− ̇𝑖
∗

𝑑
) .

(28)

In terms of (28), 𝑑 axis output stator voltage 𝑢
𝑑
can be cal-

culated:

𝑢
𝑑
= 𝑢
𝑑𝑠
+ 𝑢
𝑑𝑟
, (29)

where

𝑢
𝑑𝑠

= −𝑘
3
⋅ 𝑒
𝑑
+ 𝑖
𝑑
− 𝜔 ⋅ 𝑖

𝑞
+ 𝑖
∗

𝑑
, (30)

𝑢
𝑑𝑟

= −
𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
, (31)

where 𝑘
3
is the positive control gain and 𝜀

2
is a positive num-

ber chosen arbitrarily.
By substitution of (30) and (31) into (26) and (28), respec-

tively, the following equations can be acquired:

̇𝑒
𝑑
= −𝑘
3
⋅ 𝑒
𝑑
+ 𝑢
𝑑𝑟

+ Δ
2
= −𝑘
3
⋅ 𝑒
𝑑
−
𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
, (32)

�̇�
3
= �̇�
2
+ 𝑒
𝑑
̇𝑒
𝑑

= �̇�
2
+ 𝑒
𝑑
(−𝑘
3
⋅ 𝑒
𝑑
−
𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
) ,

(33)
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𝑒
𝑑
(−

𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
) = −

𝑑
2

2
(x)

4𝜀
2

𝑒
2

𝑑
+ Δ
2
𝑒
𝑑

≤ −
𝑑
2

2
(x)

4𝜀
2

𝑒
2

𝑑
+ 𝑑
2
(x) 𝑓
2max

𝑒𝑑


= −(
𝑑
2
(x) 𝑒𝑑



2√𝜀
2

− √𝜀
2
𝑓
2max)

2

+ 𝜀
2
𝑓
2

2max.

(34)

Step 4. Lyapunov function 𝑉 of PMSM chaotic system
with fully unknown parameters and external disturbances is
selected as follows:

𝑉 = 𝑉
3
+

1

2𝜃
1

�̃�
2

𝑙
+

1

2𝜃
2

�̃�
2

+
1

2𝛿 ⋅ 𝜃
3

�̃�
2

, (35)

where 𝜃
1
, 𝜃
2
, and 𝜃

3
represent positive adaptive gains.

Combined with equations ̇̃
𝛿 =

̇̂
𝛿, ̇̃𝛾 = ̇̂𝛾, and ̇̃𝜏

𝑙
= ̇̂𝜏
𝑙
,

derivative of selected Lyapunov function 𝑉 can be calculated
as follows:

�̇� = �̇�
3
+

�̃�
𝑙

𝜃
1

̇̂𝜏
𝑙
+

�̃�

𝜃
2

̇̂𝛾 +
�̃�

𝛿 ⋅ 𝜃
3

̇̂
𝛿 = �̇�

2
+ 𝑒
𝑑
(−𝑘
3
⋅ 𝑒
𝑑

+ 𝑢
𝑑𝑟

+ Δ
2
) = �̇�
1
+ 𝑒
𝑞
(−𝑘
2
𝑒
𝑞
−

1

𝛿
⋅ 𝑒
𝑞
+ 𝑘
1
𝑒
𝜔
− �̃�

⋅ 𝜔 + 𝑢
𝑞𝑟
+ Δ
1

−
�̃�

𝛿
((�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) − 𝑘
1
⋅ (𝑖
𝑞
− 𝜔))

+ �̃�
𝑙
(�̂� ⋅ 𝑘
1
− 1)) + 𝑒

𝑑
(−𝑘
3
⋅ 𝑒
𝑑
+ 𝑢
𝑑𝑟

+ Δ
2
)

= 𝑒
𝜔
(
1

𝛿
𝑒
𝑞
+
�̂�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) + �̃�
𝑙
− 𝑘
1
𝑒
𝜔
)

+ 𝑒
𝑞
(−𝑘
2
𝑒
𝑞
−

1

𝛿
⋅ 𝑒
𝑞
+ 𝑘
1
𝑒
𝜔
− �̃� ⋅ 𝜔 + 𝑢

𝑞𝑟
+ Δ
1

−
�̃�

𝛿
((�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) − 𝑘
1
⋅ (𝑖
𝑞
− 𝜔))

+ �̃�
𝑙
(�̂� ⋅ 𝑘
1
− 1)) + 𝑒

𝑑
(−𝑘
3
⋅ 𝑒
𝑑
+ 𝑢
𝑑𝑟

+ Δ
2
) =

1

𝛿

⋅ 𝑒
𝑞
𝑒
𝜔
+
�̃�

𝛿
(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) ⋅ 𝑒
𝜔
+ �̃�
𝑙
𝑒
𝜔
− 𝑘
1
𝑒
2

𝜔

− 𝑘
3
𝑒
2

𝑑
− 𝑘
2
𝑒
2

𝑞
− �̃�𝜔𝑒

𝑞
−

1

𝛿
𝑒
2

𝑞
+ 𝑒
𝑞
(𝑢
𝑞𝑟
+ Δ
1
)

+ 𝑒
𝑑
(𝑢
𝑑𝑟

+ Δ
2
) −

�̃�

𝛿
((�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
)

− 𝑘
1
(𝑖
𝑞
− 𝜔)) ⋅ 𝑒

𝑞
+ �̃�
𝑙
(�̂� ⋅ 𝑘
1
− 1) 𝑒

𝑞
+ 𝑘
1
𝑒
𝜔
𝑒
𝑞

+
�̃�
𝑙

𝜃
1

̇̂𝜏
𝑙
+

�̃�

𝜃
2

̇̂𝛾 +
�̃�

𝛿𝜃
3

̇̂
𝛿 =

1

𝛿
𝑒
𝑞
𝑒
𝜔
+ 𝑘
1
𝑒
𝜔
𝑒
𝑞

+
�̃�

𝛿
[(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) 𝑒
𝜔
− (�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) 𝑒
𝑞

+ 𝑘
1
(𝑖
𝑞
− 𝜔) 𝑒

𝑞
+

̇̂
𝛿

𝜃
3

] − 𝑘
1
𝑒
2

𝜔
− 𝑘
2
𝑒
2

𝑑
− 𝑘
3
𝑒
2

𝑞

+ �̃�
𝑙
[𝑒
𝜔
− 𝑒
𝑞
+ �̂�𝑘
1
𝑒
𝑞
+

̇̂𝜏
𝑙

𝜃
1

] + �̃� [−𝜔𝑒
𝑞
+

̇̂𝛾

𝜃
2

]

−
1

𝛿
𝑒
2

𝑞
+ 𝑒
𝑞
(−

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1
) + 𝑒
𝑑
(−

𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑

+ Δ
2
) .

(36)

In terms of (36), the adaptive laws of unknown parameters 𝛿,
𝛾, and 𝜏

𝑙
can be selected, respectively, as follows:

̇̂
𝛿 = −𝜃

3
[(�̂�
𝑙
+ �̇�
∗

− 𝑘
1
𝑒
𝜔
) ⋅ (𝑒
𝜔
− 𝑒
𝑞
)

+ 𝑘
1
(𝑖
𝑞
− 𝜔) 𝑒

𝑞
] ,

(37)

̇̂𝛾 = 𝜃
2
𝜔𝑒
𝑞
, (38)

̇̂𝜏
𝑙
= −𝜃
1
[𝑒
𝜔
− 𝑒
𝑞
+ �̂�𝑘
1
𝑒
𝑞
] . (39)

By substitution of (37), (38), and (39) into (36), (36) can be
simplified as follows:

�̇� =
1

𝛿
𝑒
𝑞
𝑒
𝜔
+ 𝑘
1
𝑒
𝑞
𝑒
𝜔
− 𝑘
1
𝑒
2

𝜔
− 𝑘
3
𝑒
2

𝑑
− 𝑘
2
𝑒
2

𝑞
−

1

𝛿
𝑒
2

𝑞

+ 𝑒
𝑞
(−

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1
)

+ 𝑒
𝑑
(−

𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
) .

(40)

3.3. Stability Analysis

Theorem 4. For PMSM chaotic system model (3) with fully
unknown parameters and external disturbances, design of
adaptive control laws (37), (38), and (40) and selection of
suitable controller gains 𝑘

1
, 𝑘
2
, 𝑘
3
, 𝜀
1
, and 𝜀

2
and adaptive

gains 𝜃
1
, 𝜃
2
, and 𝜃

3
, the proposed adaptive robust backstepping

controllers (21) and (29) can ensure the tracking error signals
(5), (7), and (8) of PMSM chaotic systems are asymptotically
stable.That is to say, PMSMchaotic system can run out of chaos
quickly through the proposed controllers (21) and (29) and track
the given reference signals.

Through stability analysis, we want to verify the correct-
ness of the theorem.
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According to (40), new expression can be obtained as fol-
lows through some mathematical computations:

�̇� =
1

𝛿
𝑒
𝑞
𝑒
𝜔
+ 𝑘
1
𝑒
𝑞
𝑒
𝜔
− 𝑘
1
𝑒
2

𝜔
− 𝑘
3
𝑒
2

𝑑
− 𝑘
2
𝑒
2

𝑞
−

1

𝛿
𝑒
2

𝑞

+ 𝑒
𝑞
(−

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1
) + 𝑒
𝑑
(−

𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
)

= −
1

2𝛿
(𝑒
𝜔
− 𝑒
𝑞
)
2

+
1

2𝛿
𝑒
2

𝜔
+

1

2𝛿
𝑒
2

𝑞
−
𝑘
1

2
(𝑒
𝜔
− 𝑒
𝑞
)
2

+
𝑘
1

2
𝑒
2

𝜔
+
𝑘
1

2
𝑒
2

𝑞
− 𝑘
1
𝑒
2

𝜔
− 𝑘
3
𝑒
2

𝑑
− 𝑘
2
𝑒
2

𝑞
−

1

𝛿
𝑒
2

𝑞

+ 𝑒
𝑞
(−

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1
) + 𝑒
𝑑
(−

𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
)

= −
1

2𝛿
(𝑒
𝜔
− 𝑒
𝑞
)
2

−
𝑘
1

2
(𝑒
𝜔
− 𝑒
𝑞
)
2

− 𝑘
3
𝑒
2

𝑑

+ (
1

2𝛿
+
𝑘
1

2
− 𝑘
1
) 𝑒
2

𝜔
+ (

1

2𝛿
+
𝑘
1

2
− 𝑘
2
−

1

𝛿
) 𝑒
2

𝑞

+ 𝑒
𝑞
(−

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1
)

+ 𝑒
𝑑
(−

𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
) .

(41)

Appropriate controller gains 𝑘
1
and 𝑘
2
are selected as follows:

(
1

2𝛿
+
𝑘
1

2
− 𝑘
1
) < 0,

(
1

2𝛿
+
𝑘
1

2
− 𝑘
2
−

1

𝛿
) < 0.

(42)

Equation (42) can be replaced by the following:

𝑘
1
>

1

𝛿
,

𝑘
1
− 2𝑘
2
<

1

𝛿
.

(43)

Then, by substitution of (43) into (41), we can obtain

�̇� = −
1

2𝛿
(𝑒
𝜔
− 𝑒
𝑞
)
2

−
𝑘
1

2
(𝑒
𝜔
− 𝑒
𝑞
)
2

− 𝑘
3
𝑒
2

𝑑

+ (
1

2𝛿
+
𝑘
1

2
− 𝑘
1
) 𝑒
2

𝜔
+ (

1

2𝛿
+
𝑘
1

2
− 𝑘
2
−

1

𝛿
) 𝑒
2

𝑞

+ 𝑒
𝑞
(−

𝑑
2

1
(x)

4𝜀
1

𝑒
𝑞
+ Δ
1
)

+ 𝑒
𝑑
(−

𝑑
2

2
(x)

4𝜀
2

𝑒
𝑑
+ Δ
2
)

≤ −
1

2𝛿
(𝑒
𝜔
− 𝑒
𝑞
)
2

−
𝑘
1

2
(𝑒
𝜔
− 𝑒
𝑞
)
2

− 𝑘
3
𝑒
2

𝑑
− 𝑘
4
𝑒
2

𝜔

− 𝑘
5
𝑒
2

𝑞
− (

𝑑
1
(x) 𝑒𝑞



2√𝜀
1

− √𝜀
1
𝑓
1max)

2

+ 𝜀
1
𝑓
2

1max

− (
𝑑
2
(x) 𝑒𝑑



2√𝜀
2

− √𝜀
2
𝑓
2max)

2

+ 𝜀
2
𝑓
2

2max

≤ −
1

2𝛿
(𝑒
𝜔
− 𝑒
𝑞
)
2

−
𝑘
1

2
(𝑒
𝜔
− 𝑒
𝑞
)
2

− 𝑘
3
𝑒
2

𝑑
− 𝑘
4
𝑒
2

𝜔

− 𝑘
5
𝑒
2

𝑞
− (

𝑑
1
(x) 𝑒𝑞



2√𝜀
1

− √𝜀
1
𝑓
1max)

2

− (
𝑑
2
(x) 𝑒𝑑



2√𝜀
2

− √𝜀
2
𝑓
2max)

2

+ 𝜀
0
,

(44)

where 𝑘
4
= −(1/2𝛿 + 𝑘

1
/2 − 𝑘

1
) ≥ 0, 𝑘

5
= −(1/2𝛿 + 𝑘

1
/2 −

𝑘
2
− 1/𝛿) ≥ 0, and 𝜀

0
= 𝜀
1
𝑓
2

1max + 𝜀
2
𝑓
2

2max.
Let

𝑊(𝑖 (𝑡)) = −
1

2𝛿
(𝑒
𝜔
− 𝑒
𝑞
)
2

−
𝑘
1

2
(𝑒
𝜔
− 𝑒
𝑞
)
2

− 𝑘
3
𝑒
2

𝑑

− 𝑘
4
𝑒
2

𝜔
− 𝑘
5
𝑒
2

𝑞

− (

𝑑
1
(x) 𝑒𝑞



2√𝜀
1

− √𝜀
1
𝑓
1max)

2

− (
𝑑
2
(x) 𝑒𝑑



2√𝜀
2

− √𝜀
2
𝑓
2max)

2

+ 𝜀
0
,

(45)

where 𝑖(𝑡) = (𝑒
𝜔
, 𝑒
𝑞
, 𝑒
𝑑
).

By integration of (45), we can get

∫

𝑡

𝑡0

𝑊(𝑖 (𝑡)) 𝑑𝑡 = −∫

𝑡

𝑡0

�̇� (𝑖 (𝑡)) 𝑑𝑡 ⇒

∫

𝑡

𝑡0

𝑊(𝑖 (𝑡)) 𝑑𝑡 = 𝑉 (𝑡
0
) − 𝑉 (𝑡) .

(46)

Since𝑉(𝑡
0
) is bounded and𝑉(𝑡) is bounded and nonincreas-

ing, hence

lim
𝑡→∞

∫

𝑡

𝑡0

𝑊(𝑖 (𝑡)) 𝑑𝑡 < ∞. (47)

Moreover, 𝑊(𝑖(𝑡)) is uniform continuous and �̇�(𝑖(𝑡)) is
bounded. In accordance with Barbalat’s Lemma, the follow-
ing equation can be obtained:

lim
𝑡→∞

𝑊(𝑖 (𝑡)) = 0. (48)

Apparently, through selection of suitable controller gains 𝑘
1
,

𝑘
2
, 𝑘
3
, 𝜀
1
, and 𝜀

2
, �̇� can be ensured to be negative definite.

The above derivation has proved that the selected suitable
controller gains 𝑘

1
, 𝑘
2
, 𝑘
3
, 𝜀
1
, and 𝜀

2
and adaptive gains 𝜃

1
, 𝜃
2
,
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Figure 2: The 𝜔 curve of PMSM chaotic system with no control
inputs 𝑢

𝑑
and 𝑢

𝑞
.

and 𝜃
3
can make the inequalities of 𝑉 ≥ 0 and �̇� < 0 hold.

In addition, equation of 𝑉 = 0 is not satisfied until 𝑒
𝜔
= 𝑒
𝑞
=

𝑒
𝑑
= �̃�
𝑙
= �̃� = �̃� = 0. In summary, PMSM chaotic system

is globally asymptotically stable at the equilibrium point of
(𝑒
𝜔
, 𝑒
𝑞
, 𝑒
𝑑
) = (0, 0, 0).

4. Numerical Simulation and Discussions

In order to illustrate the superiority of the proposed approach
adequately, the simulation is carried out in MATLAB envi-
ronment for three cases under the initial condition of
(𝜔, 𝑖
𝑞
, 𝑖
𝑑
) = (0, 0, 0). Let (𝜔, 𝑖

𝑞
, 𝑖
𝑑
) = (𝑥

1
, 𝑥
2
, 𝑥
3
) and the con-

trol parameters are selected as 𝑘
1
= 10, 𝑘

2
= 30000, 𝑘

3
= 5,

and 𝜀
1
= 𝜀
2
= 0.01; the adaptive gains are chosen as 𝜃

1
= 6.2,

𝜃
2
= 100, and 𝜃

3
= 0.06. The simulation time is chosen as

100 s and the designed controller is put into effect at the time
of 20 s.

4.1. Test-I. The PMSM chaotic system is tested with the
parameters 𝛿 = 0.2, 𝛾 = 50, and 𝜏

𝑙
= 3.2. In order to be

consistent with the reality better, we assume that the three
parameters of PMSM chaotic system are all unknown with
the initial condition of (𝛿, 𝛾, 𝜏

𝑙
) = (0, 0, 0), and the expected

reference signals are set as 𝜔∗ = 10 and 𝑖
∗

𝑑
= 1. Further-

more, the external disturbances Δ
1
(x, 𝑡) = 20𝑥

3
sin(5𝑡) and

Δ
2
(x, 𝑡) = 10 sin(5𝑡) are injected into the PMSM chaotic sys-

tem. The simulation results given in Figures 2–4 apparently
show PMSM runs in a chaotic state with no control inputs.
Therefore, introduction of the presented control approach to
suppress chaos in PMSM system will be of great importance
and necessity. Figures 5–12 show that the proposed controller
is utilized to control the PMSMchaotic system,where Figures
5–7 display the curves of state variables changing over time
for PMSM chaotic system, which demonstrate the PMSM
system stays away from the previous chaotic state when the
designed controller is added to PMSM chaotic system, and
track the desired signals accurately and rapidly. Furthermore,
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Figure 3: The 𝑖
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curve of PMSM chaotic system with no control

inputs 𝑢
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and 𝑢

𝑞
.
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Figures 5–7 indicate the proposed controller shown in Figures
8-9 can inhibit the external disturbances.

Figures 10–12 show the estimated errors �̃�, �̃�, and �̃�
𝑙

of unknown parameters 𝛿, 𝛾, and 𝜏
𝑙
for PMSM chaotic

system,which testify the effectiveness of constructed adaptive
laws and demonstrate the proposed approach has a good
robustness against the uncertainties in system parameters.

4.2. Test-II. In reality, the motor parameters are frequently
varying with the design values. As a result, the parameters
𝛿, 𝛾, and 𝜏

𝑙
in Test-I are changed into 𝛿 = 0.1, 𝛾 = 25, and

𝜏
𝑙
= 1.6 in Test-II, respectively. Simultaneously, the expected

reference signals are also changed and set as 𝜔∗ = 20 and
𝑖
∗

𝑑
= 0. In a word, the unknown motor parameters and

expected reference signals all differ from Test-I, which is
able to validate the proposed control algorithm better. The
simulation results are shown in Figures 13–20. Figures 13–15
indicate the motor’s output states 𝜔, 𝑖

𝑞
, and 𝑖

𝑑
added the
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controller inputs 𝑢
𝑑
and 𝑢

𝑞
shown in Figures 16-17, which

demonstrate that the designed controller can guarantee the
outputs track references well and suppress the external dis-
turbances effectively. Figures 18–20 indicate that the designed
adaptive law can estimate the fully unknown parameters
precisely even if the fully unknown parameters are changed.

4.3. Test-III. For Test-III, the external disturbances are en-
larged in addition to changing the unknown motor param-
eters and expected reference signals on the basis of Test-II,
which are described as Δ

1
(x, 𝑡) = 40𝑥

3
sin(5𝑡) and Δ

2
(x, 𝑡) =

20 sin(5𝑡). The control difficulty in Test-III is larger than
the previous two experiments and Test-III is a more general
instance to verify the controller’s performance. The sim-
ulation results are shown in Figures 21–28. Figures 21–23
give the curves of the state variables 𝜔, 𝑖

𝑞
, and 𝑖

𝑑
, which

manifest these variables are controlled to their references and
chaos is eliminated when adding the proposed controllers
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shown in Figures 24-25. Figures 21–23 also illus-

trate the enlarged external disturbances are restrained by
the controllers. The estimation errors of the fully unknown
parameters are provided in Figures 26–28, which proves the
effectiveness of the adaptive laws again.

Remark 5. Previous researches on parameter estimation of
PMSM chaotic system mostly assumed that only partial
parameters of the system are unknown.The paper takes fully
nondeterministic parameters 𝛿, 𝛾, and 𝜏

𝑙
into account; it

undoubtedly extends the theory of parameter estimation for
PMSM chaotic system.

Remark 6. The action time of control inputs is 20 s in the
simulation. The aim of doing this is to observe the effect of
the control approach better. In reality, as long as the chaos
occurs, the controller will be put into effect.

Remark 7. On the basis of considering fully unknown param-
eters, the external disturbances are introduced into the
PMSM chaotic model. Hence, the designed control consists
of two parts. One is to guarantee the state variables to track
the reference signals; another is to suppress the external dis-
turbances. In general, the simultaneous consideration of fully
unknown parameters and external disturbances makes the
research results more general and practical.

5. Conclusions

In this paper, a control approach is proposed to address the
control issue of chaos in PMSM system with fully unknown
parameters and external disturbances. Main conclusions are
acquired as the following:

(1) Through combination of adaptive control with back-
stepping control, the presented adaptive robust back-
stepping control scheme resolves the main problems
of the conventional backstepping algorithm encoun-
tered. And the stability of the designed controller is
proved by Lyapunov theory.

(2) The simulation results show that the designed con-
troller is able to make the PMSM operate out of cha-
otic state quickly, and the adaptive laws are established
to estimate the unknown parameters accurately. Fur-
thermore, the proposed algorithm can ensure the
unknown parameters converge to the actual values
fast and restrain the external disturbance effectively.

(3) The design method in this paper is simple and effect-
ive. For PMSM chaotic system with fully unknown
parameters, the control variables in proposed ap-
proach can be self-adjusted with the changing of sys-
tem parameters. Therefore, our findings are more
practical and more convenient for engineering appli-
cations. Future research will discuss the application of
the proposed control approach into practical imple-
mentation.
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