2,900 research outputs found

    BLIP-Adapter: Parameter-Efficient Transfer Learning for Mobile Screenshot Captioning

    Full text link
    This study aims to explore efficient tuning methods for the screenshot captioning task. Recently, image captioning has seen significant advancements, but research in captioning tasks for mobile screens remains relatively scarce. Current datasets and use cases describing user behaviors within product screenshots are notably limited. Consequently, we sought to fine-tune pre-existing models for the screenshot captioning task. However, fine-tuning large pre-trained models can be resource-intensive, requiring considerable time, computational power, and storage due to the vast number of parameters in image captioning models. To tackle this challenge, this study proposes a combination of adapter methods, which necessitates tuning only the additional modules on the model. These methods are originally designed for vision or language tasks, and our intention is to apply them to address similar challenges in screenshot captioning. By freezing the parameters of the image caption models and training only the weights associated with the methods, performance comparable to fine-tuning the entire model can be achieved, while significantly reducing the number of parameters. This study represents the first comprehensive investigation into the effectiveness of combining adapters within the context of the screenshot captioning task. Through our experiments and analyses, this study aims to provide valuable insights into the application of adapters in vision-language models and contribute to the development of efficient tuning techniques for the screenshot captioning task. Our study is available at https://github.com/RainYuGG/BLIP-Adapte

    Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of ductal carcinoma in situ (DCIS) in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs) are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α), and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion.</p> <p>Methods</p> <p>349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH); group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI), and group 5: invasive ductal carcinoma (IDC). A comparative evaluation of the four immunostains was conducted.</p> <p>Results</p> <p>Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%.</p> <p>Conclusions</p> <p>This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.</p

    Effect of Tumor Necrosis Factor-α on Neutralization of Ventricular Fibrillation in Rats with Acute Myocardial Infarction

    Get PDF
    The purpose of this study was to explore the effects of tumor necrosis factor-α (TNF-α) on ventricular fibrillation (VF) in rats with acute myocardial infarction (AMI). Rats were randomly classified into AMI group, sham operation group and recombinant human tumor necrosis factor receptor:Fc fusion protein (rhTNFR:Fc) group. Spontaneous and induced VFs were recorded. Monophasic action potentials (MAPs) among different zones of myocardium were recorded at eight time points before and after ligation and MAP duration dispersions (MAPDds) were calculated. Then expression of TNF-α among different myocardial zones was detected. After ligation of the left anterior descending coronary artery, total TNF-α expression in AMI group began to markedly increase at 10 min, reached a climax at 20–30min, and then gradually decreased. The time-windows of VFs and MAPDds in the border zone performed in a similar way. At the same time-point, the expression of TNF-α in the ischemia zone was greater than that in the border zone, and little in the non-ischemia zone. Although the time windows of TNF-α expression, the MAPDds in the border zone and the occurrence of VFs in the rhTNFR:Fc group were similar to those in the AMI group, they all decreased in the rhTNFR:Fc group. Our findings demonstrate that TNF-α could enlarge the MAPDds in the border zone, and promote the onset of VFs

    IL-9 Inhibits Viral Replication in Coxsackievirus B3-Induced Myocarditis

    Get PDF
    Myocardial injuries in viral myocarditis (VMC) are caused by viral infection and related autoimmune disorders. Recent studies suggest that IL-9 mediated both antimicrobial immune and autoimmune responses in addition to allergic diseases. However, the role of IL-9 in viral infection and VMC remains controversial and uncertain. In this study, we infected Balb/c mice with Coxsackievirus B3 (CVB3), and found that IL-9 was enriched in the blood and hearts of VMC mice on days 5 and 7 after virus infection. Most of IL-9 was secreted by CD8+ T cells on day 5 and CD4+ T cells on day 7 in the myocardium. Further, IL-9 knockout exacerbated cardiac damage following CVB3 infection, along with a sharp increase in viral replication and IL-17a expression, as well as a decrease in TGF-β. In contrast, repletion of IL-9 in Balb/c mice with CVB infection induced the opposite effect. Studies in vitro further revealed that IL-9 directly inhibited viral replication in cardiomyocytes by reducing coxsackie and adenovirus receptor expression, which might be associated with up-regulation of TGF-β autocrine effect in these cells. However, IL-9 had no direct effect on apoptosis in cardiomyocytes. Our data indicated that IL-9 played a protective role in disease progression by inhibiting CVB3 replication in the early stages of VMC

    THE EFFECT OF INSULIN AND CARBOHYDRATE SUPPLEMENTATION ON GLYCOGEN REPLENISHMENT AMONG DIFFERENT HINDLIMB MUSCLES IN RATS FOLLOWING PROLONGED SWIMMING

    Get PDF
    In the present study we investigated the interactive effects of insulin and carbohydrate on glycogen replenishment in different rat hindlimb muscles. Forty male Sprague Dawley rats were assigned to 5 groups, including 1) sedentary control with carbohydrate supplement (2 g glucose · kg body wt-1), 2) sedentary rats with 16 hours recovery, carbohydrate and insulin (0.5 U · kg body wt-1), 3) swimming without recovery, 4) swimming with 16 hours recovery and carbohydrate supplement, and 5) swimming with 16 hours recovery, carbohydrate and insulin. The swimming protocol consisted of two 3 h swimming sections, which were separated by a 45 min rest. The insulin and carbohydrate were administered to the rats immediately after exercise. At the end of the experiment, the soleus (S), plantaris (P), quadriceps (Q) and gastrocnemius (G) were surgically excised to evaluate glycogen utilization and replenishment. We observed that glycogen utilization was significantly lower in G and Q than S and P during swimming (p <0.05), and S showed the greatest capacity of glycogen resynthesis after post-exercise recovery (p <0.05). In the sedentary state, the glycogen synthesis did not differ among hindlimb muscles during insulin and carbohydrate treatments. Interestingly, with insulin and carbohydrate, the glycogen resynthesis in S and P were significantly greater than in Q and G following post-exercise recovery (p <0.05). We therefore concluded that the soleus and plantaris are the primary working muscles during swimming, and the greatest glycogen replenishment capacity of the soleus during post-exercise recovery is likely due to its highest insulin sensitivity

    Image operator learning coupled with CNN classification and its application to staff line removal

    Full text link
    Many image transformations can be modeled by image operators that are characterized by pixel-wise local functions defined on a finite support window. In image operator learning, these functions are estimated from training data using machine learning techniques. Input size is usually a critical issue when using learning algorithms, and it limits the size of practicable windows. We propose the use of convolutional neural networks (CNNs) to overcome this limitation. The problem of removing staff-lines in music score images is chosen to evaluate the effects of window and convolutional mask sizes on the learned image operator performance. Results show that the CNN based solution outperforms previous ones obtained using conventional learning algorithms or heuristic algorithms, indicating the potential of CNNs as base classifiers in image operator learning. The implementations will be made available on the TRIOSlib project site.Comment: To appear in ICDAR 201

    Josephson current in d-wave superconductor junctions with ferromagnetic insulator

    No full text
    We investigate the temperature dependence of the critical current and current-phase relation by taking into account the ferromagnetic scattering effect at interface in a d-wave superconductor (S)/ferromagnetic insulator layer (FI)/d-wave superconductor (S) junction. It is shown that both the barrier scattering and the roughness scattering at the interface always suppress the Andreev reflection. The Josephson critical currents depend to a great extent on the effective exchange field of the interface and the crystal orientation of the d-wave superconductor. The exchange field can lead to the change of the junction from 0 to π states and the alteration of the oscillation periods. It can also enhance the Josephson critical current in the junction under certain conditions
    corecore