1,182 research outputs found

    Cyclic lateral response of FRP-confined circular concrete-filled steel tubular columns

    Get PDF
    Concrete-filled steel tubular (CFT) columns are widely used as columns in many structural systems and a common failure mode of such tubular columns is inelastic outward local buckling near a column end. The use of fibre-reinforced polymer (FRP) jackets/wraps for the suppression of such local buckling has recently been proposed and has been proven to possess excellent potential in both retrofit/strengthening and new construction. This paper presents the results of an experimental study into the behaviour of large-scale FRP-confined CFT (CCFT) columns under combined axial compression and lateral loading. The test parameters included the stiffness of the FRP jacket and the loading scenario. The test results showed that the FRP jacket can effectively delay or even prevent outward local buckling at the end of a cantilevered CFT column, leading to significantly improved structural performance under combined constant axial compression and cyclic lateral loading. Compared to monotonic lateral loading, cyclic lateral loading was found to introduce more severe localized deformation near the column end and may lead to earlier FRP rupture within that region

    Molecular cloning of a novel GSK3/shaggy-like gene from Triticum monococcum L. and its expression in response to salt, drought and other abiotic stresses

    Get PDF
    The glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinases are nonreceptor serine/threonine protein kinases that are involved in a variety of biological processes. Here, a novel GSK-3-like kinase encoding cDNA was isolated from Triticum monococcum L. seedlings by reverse transcriptase polymerase chain reaction (RT-PCR). Sequence analysis showed that the full length of cDNA consist of 1,543 bp with an open reading frame of 1,068 bp, which encodes 355 amino acid residues. The deduced amino acid sequence showed a high homology with shaggy-like kinases from Triticum aestivum, Zea mays, Trifolium repens, Nicotine tabacum, Medicago sativa and Arabidopsis thaliana; therefore, the gene was named TmGSK1 (Triticum monococcum Glycogen Synthase Kinase 1,GenBank Accession No. DQ443471). Southern blot analysis indicated that there was only one copy of TmGSK1 in the einkorn wheat genome. Quantitative real-time RT-PCR studies showed that the expression of TmGSK1 in the einkorn wheat was induced by salt stress, mechanical wounding, ABA hormone, cold and drought. These results suggest that cells accumulate more TmGSK1 mRNA response to those abiotic stresses. TmGSK1 was shown to be a positive regulator commonly involved in the tolerance to salt, mechanical injury, ABA hormone, cold and drought in einkorn wheat.Key words: TmGSK1, abiotic stress, shaggy-like kinase, signal transduction, Triticum monococcum L

    Intrinsic anomalous Hall effect in nickel: An GGA+U study

    Full text link
    The electronic structure and intrinsic anomalous Hall conductivity of nickel have been calculated based on the generalized gradient approximation (GGA) plus on-site Coulomb interaction (GGA+U) scheme. It is found that the intrinsic anomalous Hall conductivity (σxyH\sigma_{xy}^H) obtained from the GGA+U calculations with U=1.9U = 1.9 eV and J=1.2J=1.2 eV, is in nearly perfect agreement with that measured recently at low temperatures while, in contrast, the σxyH\sigma_{xy}^H from the GGA calculations is about 100% larger than the measured one. This indicates that, as for the other spin-orbit interaction (SOI)-induced phenomena in 3dd itinerant magnets such as the orbital magnetic magnetization and magnetocrystalline anisotropy, the on-site electron-electron correlation, though moderate only, should be taken into account properly in order to get the correct anomalous Hall conductivity. The intrinsic σxyH\sigma_{xy}^H and the number of valence electrons (NeN_e) have also been calculated as a function of the Fermi energy (EFE_F). A sign change is predicted at EF=0.38E_F = -0.38 eV (Ne=9.57N_e = 9.57), and this explain qualitatively why the theoretical and experimental σxyH\sigma_{xy}^H values for Fe and Co are positive. It is also predicted that fcc Ni(1x)_{(1-x)}Co(Fe,Cu)x_x alloys with xx being small, would also have the negative σxyH\sigma_{xy}^H with the magnitude being in the range of 5001400500\sim 1400 Ω1\Omega^{-1}cm1^{-1}. The most pronounced effect of including the on-site Coulomb interaction is that all the dd-dominant bands are lowered in energy relative to the EFE_F by about 0.3 eV, and consequently, the small minority spin X2_2 hole pocket disappears. The presence of the small X2_2 hole pocket in the GGA calculations is attributed to be responsible for the large discrepancy in the σxyH\sigma_{xy}^H between theory and experiment.Comment: 7 pages, 3 figures; Accepted for publication in Physical Review

    Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    Full text link
    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the BdSBdS spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well as the postulate on Newton-Hooke universal time. All results are readily extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte

    Phenomenological Scaling of Rapidity Dependence for Anisotropic Flows in 25 MeV/nucleon Ca + Ca by Quantum Molecular Dynamics Model

    Full text link
    Anisotropic flows (v1v_1, v2v_2, v3v_3 and v4v_4) of light fragments up till the mass number 4 as a function of rapidity have been studied for 25 MeV/nucleon 40^{40}Ca + 40^{40}Ca at large impact parameters by Quantum Molecular Dynamics model. A phenomenological scaling behavior of rapidity dependent flow parameters vnv_n (n = 1, 2, 3 and 4) has been found as a function of mass number plus a constant term, which may arise from the interplay of collective and random motions. In addition, v4/v22v_4/{v_2}^2 keeps almost independent of rapidity and remains a rough constant of 1/2 for all light fragments.Comment: 4 pages, 5 figure

    Hamiltonian type Lie bialgebras

    Full text link
    We first prove that, for any generalized Hamiltonian type Lie algebra LL, the first cohomology group H1(L,LL)H^1(L,L \otimes L) is trivial. We then show that all Lie bialgebra structures on LL are triangular.Comment: LaTeX, 16 page

    Observation of strong anisotropic forbidden transitions in (001) InGaAs/GaAs single-quantum well by reflectance-difference spectroscopy and its behavior under uniaxial strain

    Get PDF
    The strong anisotropic forbidden transition has been observed in a series of InGaAs/GaAs single-quantum well with well width ranging between 3 nm and 7 nm at 80 K. Numerical calculations within the envelope function framework have been performed to analyze the origin of the optical anisotropic forbidden transition. It is found that the optical anisotropy of this transition can be mainly attributed to indium segregation effect. The effect of uniaxial strain on in-plane optical anisotropy (IPOA) is also investigated. The IPOA of the forbidden transition changes little with strain, while that of the allowed transition shows a linear dependence on strain

    Spin-orbital gapped phase with least symmetry breaking in the one-dimensional symmetrically coupled spin-orbital model

    Full text link
    To describe the spin-orbital energy gap formation in the one-dimensional symmetrically coupled spin-orbital model, we propose a simple mean field theory based on an SU(4) constraint fermion representation of spins and orbitals. A spin-orbital gapped phase is formed due to a marginally relevant spin-orbital valence bond pairing interaction. The energy gap of the spin and orbital excitations grows extremely slowly from the SU(4) symmetric point up to a maximum value and then decreases rapidly. By calculating the spin, orbital, and spin-orbital tensor static susceptibilities at zero temperature, we find a crossover from coherent to incoherent magnetic excitations as the spin-orbital coupling decreasing from large to small values.Comment: 10 pages, Revtex file, 5 figure
    corecore