549 research outputs found

    A robust potential-based contact force solution approach for discontinuous deformation analysis of irregular convex polygonal block/particle systems

    Get PDF
    Contact interaction of two bodies can be modeled using the penalty function approach while its accuracy and robustness are directly associated with the geometry of contact bodies. Particularly, in the research fields of rock mechanics, we need to treat polygonal shapes such as mineral grains/particles at a mesoscale and rock blocks at a macroscale. The irregular shapes (e.g., polygons with small angles or small edges) pose challenges to traditional contact solution approach in terms of algorithmic robustness and complexity. This paper proposed a robust potential-based penalty function approach to solve contact of polygonal particles/block. An improved potential function is proposed considering irregular polygonal shapes. A contact detection procedure based on the entrance block concept is presented, followed by a numerical integral algorithm to compute the contact force. The proposed contact detection approach is implemented into discontinuous deformation analysis with an explicit formulation. The accuracy and robustness of the proposed contact detection approach are verified by benchmarking examples. The potential of the proposed approach in analysis of kinetic behavior of complex polygonal block systems is shown by two application examples. It can be applied in any discontinuous computation models using stepwise contact force-based solution procedures. © 2020, The Author(s)

    A cover-based contact detection approach for irregular convex polygons in discontinuous deformation analysis

    Get PDF
    Irregular polygon shapes (eg, with small edges or small angles) are usually encountered in the contact simulation of discrete block systems. Treatment of irregular polygons in contact detection process has critical effects on the robustness and efficiency of the discontinuous computation approach. The present work proposes a cover-based strategy to detect and solve contacts of irregular convex polygons in a robust and efficient way. Contact constraints of two polygons are represented by vertex-edge and edge-vertex contact covers in 2D. Two loops, namely vertex-edge loop and edge-vertex loop, and two filter criteria, namely the entrance filter criterion and the distance filter criterion, are used to establish the potential contact cover list of two neighbor polygons. The initial active and closed contact covers are chosen based on block configuration at the beginning of the step and they are then updated in the open-close iteration process using proposed criteria. This strategy is implemented in discontinuous deformation analysis. The robustness of the proposed cover-based approach and the conventional type-based approach in handling contact of irregular blocks is verified first. Then, the contact analysis efficiency of the cover-based approach with different contact tolerances is evaluated. This cover-based method can be extended to 3D case for efficient and robust contact analysis of irregular polyhedral blocks. © 2020 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Lt

    The exposure-response relationship between temperature and childhood hand, foot and mouth disease: A multicity study from mainland China.

    Get PDF
    BACKGROUND: Hand, foot and mouth disease (HFMD) is a rising public health issue in the Asia-Pacific region. Numerous studies have tried to quantify the relationship between meteorological variables and HFMD but with inconsistent results, in particular for temperature. We aimed to characterize the relationship between temperature and HFMD in various locations and to investigate the potential heterogeneity. METHODS: We retrieved the daily series of childhood HFMD counts (aged 0-12 years) and meteorological variables for each of 143 cities in mainland China in the period 2009-2014. We fitted a common distributed lag nonlinear model allowing for over dispersion to each of the cities to obtain the city-specific estimates of temperature-HFMD relationship. Then we pooled the city-specific estimates through multivariate meta-regression with city-level characteristics as potential effect modifiers. RESULTS: We found that the overall pooled temperature-HFMD relationship was shown as an approximately inverted V shape curve, peaking at the 91th percentile of temperature with a risk ratio of 1.30 (95% CI: 1.23-1.37) compared to its 50th percentile. We found that 68.5% of the variations of city-specific estimates was attributable to heterogeneity. We identified rainfall and altitude as the two main effect modifiers. CONCLUSIONS: We found a nonlinear relationship between temperature and HFMD. The temperature-HFMD relationship varies depending on geographic and climatic conditions. The findings can help us deepen the understanding of weather-HFMD relationship and provide evidences for related public health decisions

    Fat fraction quantification of lumbar spine: comparison of T1-weighted two-point Dixon and single-voxel magnetic resonance spectroscopy in diagnosis of multiple myeloma

    Get PDF
    PURPOSEWe aimed to investigate the value of T1-weighted two-point Dixon technique and single-voxel magnetic resonance spectroscopy (MRS) in diagnosis of multiple myeloma (MM) through quantifying fat content of vertebral marrow.METHODSA total of 30 MM patients and 30 healthy volunteers underwent T1-weighted two-point Dixon and single-voxel MRS imaging. The fat fraction map (FFM) was reconstructed from the Dixon images using the equation FFM = Lip/In, where Lip represents fat maps and In represents in-phase images. The fat fraction (FF) of MRS was calculated by using the integral area of Lip peak divided by the sum of integral area of Lip peak and water peak.RESULTSFF values measured by the Dixon technique and MRS were significantly decreased in MM patients (45.99%±3.39% and 47.63%±4.38%) compared with healthy controls (64.43%±0.96% and 76.22%±1.91%) (P < 0.001 with both methods). FF values measured by Dixon technique were significantly positively correlated to those measured by MRS in MM (r = 0.837, P < 0.001) and healthy control group (r = 0.735, P < 0.001), respectively. There was no significant difference between area under the curve (AUC) obtained by the Dixon technique (0.878±0.047; range, 0.785 to 0.971; optimal cutoff, 56.35 for healthy controls vs. MM) and MRS (0.883±0.047; range, 0.791 to 0.974; optimal cutoff, 61.00 for healthy controls vs. MM). The ability of Dixon technique to differentiate MM group from healthy controls was equivalent to single-voxel MRS.CONCLUSIONRegarding detection of fat contents in vertebral bone, T1-weighted two-point Dixon technique exhibited equivalent performance to single-voxel MRS in the diagnosis of multiple myeloma. Moreover, two-point Dixon is a more convenient and stable technique for assessing bone marrow changes in MM patients than single-voxel MRS

    ARTICLE Shielding calculation for the CSNS target station

    Get PDF
    In this paper we firstly calculate the one-dimension shielding models to give the basic data for the Chinese Spallation Neutron Source (CSNS) target station. Then the three-dimensional shielding calculations have been performed for the detailed design of the CSNS target station. The gaps and void spaces in the CSNS target station are considered for precise estimation. We find that 4.8-meter-radius steel adding 1.2-meter-thick magnetite concrete can satisfy the shielding requirement in the horizontal direction. The dose rate on the top of the ceiling is a little higher than 2.5 Sv/h due to streaming effect, which originates from the moderator transfer lines. A thin sandwich structure will be adopted for decreasing residual radioactivity dose rate on the altitude directions after considering the engineering cost and maintenance. All these calculations lie on the Monte Carlo simulation code MCNPX2.5.0

    Pseudosperma arenarium (Inocybaceae), a new poisonous species from Eurasia, based on morphological, ecological, molecular and biochemical evidence

    Get PDF
    In this study, Pseudosperma arenarium is proposed as a new species, based on morphological, ecological, molecular and biochemical evidence. The new species grows on sandy ground under Populus and Pinus sylvestris in north-western China and northern Europe, respectively. It is characterised by the combination of the robust habit, nearly glabrous pileus, large cylindrical basidiospores, thin-walled cheilocystidia and eco-logical associations with Populus alba x P. berolinensis and Pinus sylvestris and unique phylogenetic place-ment. Additionally, a comprehensive toxin determination of the new species using ultra-high performance liquid chromatography-tandem mass spectrometry was conducted. Results showed that it was a mus-carine-positive species. The content were approximately five times higher in the pilei [4012.2 +/- 803.1- 4302.3 +/- 863.2 mg/kg (k = 2, p = 95%)] than in the stipes [850.4 +/- 171.1-929.1 +/- 184.2 mg/kg (k = 2, p = 95%)], demonstrating the severity of mushroom poisoning when patients consumed different parts of the poisonous mushroom. Amatoxins, phallotoxins, ibotenic acid, muscimol, psilocybin and psilocin were not detected

    Antineuroinflammatory Effects of Modified Wu-Zi-Yan-Zong Prescription in β

    Get PDF
    Modified Wu-Zi-Yan-Zong prescription (MWP), a traditional Chinese medicinal decoction, has possessed the neuroprotective and anti-inflammatory properties. The mechanisms associated with these properties, however, are not completely understood. We designed the experiments to elucidate the antineuroinflammatory property of MWP in BV2 microglia activated by β-amyloid (Aβ), which is a characteristic feature of Alzheimer’s disease (AD). The composition of MWP was studied using HPLC. BV2 microglia cells were then treated with Aβ in the presence or absence of MWP. The effects of MWP treatment on Aβ-activated neuroinflammation were determined using PCR, western blotting, and immunofluorescence staining. MWP significantly inhibited the mRNA expression of inflammatory mediators such as IL-1β, IL-6, TNF-α, and MCP-1, as well as the expression of inducible nitric oxide synthase (iNOS) in Aβ-activated BV2 microglia. MWP also inhibited the nuclear translocation and signaling pathway of nuclear factor kappa B (NF-κB) by suppressing inhibitor of nuclear factor-κB (IκB) degradation and downregulating IκB kinase β (IKKβ) phosphorylation. Moreover, MWP decreased extracellular regulated protein kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) phosphorylation, which is an important signaling pathway for proinflammatory gene expression. We concluded that MWP could suppress neuroinflammatory responses in Aβ-activated BV2 microglia via the NF-κB and ERK/p38 MAPK signaling cascades and could prove an effective therapeutic agent for the prevention and treatment of neuroinflammatory diseases such as AD
    corecore