78,812 research outputs found

    Benchmark generator for CEC 2009 competition on dynamic optimization

    Get PDF
    Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization problems. However, many real-world applications are actually dynamic. In order to study the performance of EAs in dynamic environments, one important task is to develop proper dynamic benchmark problems. Over the years, researchers have applied a number of dynamic test problems to compare the performance of EAs in dynamic environments, e.g., the “moving peaks ” benchmark (MPB) proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the singleand multi-objective dynamic test problem generator by dynamically combining different objective functions of exiting stationary multi-objective benchmark problems suggested by Jin and Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [10, 11, 12], Kang’s dynamic traveling salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc. Though a number of DOP generators exist in the literature, there is no unified approach of constructing dynamic problems across the binary space, real space and combinatorial space so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4], which construct dynamic environments for all the three solution spaces. Especially, in the rea

    Counterintuitive transitions in the multistate Landau-Zener problem with linear level crossings

    Full text link
    We generalize the Brundobler-Elser hypothesis in the multistate Landau-Zener problem to the case when instead of a state with the highest slope of the diabatic energy level there is a band of states with an arbitrary number of parallel levels having the same slope. We argue that the probabilities of counterintuitive transitions among such states are exactly zero.Comment: 9 pages, 5 figure

    A class of colliding waves in metric-affine gravity, nonmetricity and torsion shock waves

    Get PDF
    By using our recent generalization of the colliding waves concept to metric-affine gravity theories, and also our generalization of the advanced and retarded time coordinate representation in terms of Jacobi functions, we find a general class of colliding wave solutions with fourth degree polynomials in metric-affine gravity. We show that our general approach contains the standard second degree polynomials colliding wave solutions as a particular case.Comment: 13 pages, latex, to appear in J.Math.Phy

    Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    Get PDF
    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment

    Phase-sensitive quantum effects in Andreev conductance of the SNS system of metals with macroscopic phase breaking length

    Full text link
    The dissipative component of electron transport through the doubly connected SNS Andreev interferometer indium (S)-aluminium (N)-indium (S) has been studied. Within helium temperature range, the conductance of the individual sections of the interferometer exhibits phase-sensitive oscillations of quantum-interference nature. In the non-domain (normal) state of indium narrowing adjacent to NS interface, the nonresonance oscillations have been observed, with the period inversely proportional to the area of the interferometer orifice. In the domain intermediate state of the narrowing, the magneto-temperature resistive oscillations appeared, with the period determined by the coherence length in the magnetic field equal to the critical one. The oscillating component of resonance form has been observed in the conductance of the macroscopic N-aluminium part of the system. The phase of the oscillations appears to be shifted by π\pi compared to that of nonresonance oscillations. We offer an explanation in terms of the contribution into Josephson current from the coherent quasiparticles with energies of order of the Thouless energy. The behavior of dissipative transport with temperature has been studied in a clean normal metal in the vicinity of a single point NS contact.Comment: 9 pages, 7 figures, to be published in Low Temp. Phys., v. 29, No. 12, 200

    Building one molecule from a reservoir of two atoms

    Get PDF
    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combine exactly two atoms into a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits

    Information loss in local dissipation environments

    Full text link
    The sensitivity of entanglement to the thermal and squeezed reservoirs' parameters is investigated regarding entanglement decay and what is called sudden-death of entanglement, ESD, for a system of two qubit pairs. The dynamics of information is investigated by means of the information disturbance and exchange information. We show that for squeezed reservoir, we can keep both of the entanglement and information survival for a long time. The sudden death of information is seen in the case of thermal reservoir
    • 

    corecore