8,419 research outputs found

    Transverse-Mass Effective Temperature in Heavy-Ion Collisions from AGS to SPS

    Get PDF
    Transverse-mass spectra in Au+Au and Pb+Pb collisions in incident energy range from 2A to 160A GeV are analyzed within the model of 3-fluid dynamics. It is shown that dynamical description of freeze-out, accepted in this model, naturally explains the incident energy behavior of inverse-slope parameters of these spectra observed in experiment. Simultaneous reproduction of the inverse-slopes of all considered particles (protons, pions and kaons) suggests that these particles belong to the same hydrodynamic flow at the instant of their freeze-out.Comment: 4 pages, 3 figure

    NLO QCD method of the polarized SIDIS data analysis

    Full text link
    Method of polarized semi-inclusive deep inelastic scattering (SIDIS) data analysis in the next to leading order (NLO) QCD is developed. Within the method one first directly extracts in NLO few first truncated (available to measurement) Mellin moments of the quark helicity distributions. Second, using these moments as an input to the proposed modification of the Jacobi polynomial expansion method (MJEM), one eventually reconstructs the local quark helicity distributions themselves. All numerical tests demonstrate that MJEM allows us to reproduce with the high precision the input local distributions even inside the narrow Bjorken xx region accessible for experiment. It is of importance that only four first input moments are sufficient to achieve a good quality of reconstruction. The application of the method to the simulated SIDIS data on the pion production is considered. The obtained results encourage one that the proposed NLO method can be successfully applied to the SIDIS data analysis. The analysis of HERMES data on pion production is performed. To this end the pion difference asymmetries are constructed from the measured by HERMES standard semi-inclusive spin asymmetries. The LO results of the valence distribution reconstruction are in a good accordance with the respective leading order SMC and HERMES results, while the NLO results are in agreement with the existing NLO parametrizations on these quantities

    Relativistic Heavy-Ion Collisions within 3-Fluid Hydrodynamics: Hadronic Scenario

    Full text link
    A 3-fluid hydrodynamic model for simulating relativistic heavy-ion collisions is introduced. Alongside with two baryon-rich fluids, the new model considers time-delayed evolution of a third, baryon-free (i.e. with zero net baryonic charge) fluid of newly produced particles. Its evolution is delayed due to a formation time, during which the baryon-free fluid neither thermalizes nor interacts with the baryon-rich fluids. After the formation it starts to interact with the baryon-rich fluids and quickly gets thermalized. Within this model with pure hadronic equation of state, a systematic analysis of various observables at incident energies between few and about 160A GeV has been done as well as comparison with results of transport models. We have succeeded to reasonably reproduce a great body of experimental data in the incident energy range of E_{lab} = (1-160)A GeV. The list includes proton and pion rapidity distributions, proton transverse-mass spectra, rapidity distributions of Lambda and antiLambda hyperons, elliptic flow of protons and pions (with the exception of proton v2 at 40A GeV), multiplicities of pions, positive kaons, phi-mesons, hyperons and antihyperons, including multi-strange particles. This agreement is achieved on the expense of substantial enhancement of the interflow friction as compared to that estimated proceeding from hadronic free cross sections. However, we have also found out certain problems. The calculated yield of K^- is approximately by a factor of 1.5 higher than that in the experiment. We have also failed to describe directed transverse flow of protons and pion at E_{lab} > 40A GeV. This failure apparently indicates that the used EoS is too hard and thereby leaves room for a phase transition.Comment: 30 pages, 20 figures, 2 tables. Version accepted for publication in Phys. Rev.

    Evolution of Baryon-Free Matter Produced in Relativistic Heavy-Ion Collisions

    Full text link
    A 3-fluid hydrodynamic model is introduced for simulating heavy-ion collisions at incident energies between few and about 200 AGeV. In addition to the two baryon-rich fluids of 2-fluid models, the new model incorporates a third, baryon-free (i.e. with zero net baryonic charge) fluid which is created in the mid-rapidity region. Its evolution is delayed due to a formation time τ\tau, during which the baryon-free fluid neither thermalizes nor interacts with the baryon-rich fluids. After formation it thermalizes and starts to interact with the baryon-rich fluids. It is found that for τ\tau=0 the interaction strongly affects the baryon-free fluid. However, at reasonable finite formation time, τ\tau=1 fm/c, the effect of this interaction turns out to be substantially reduced although still noticeable. Baryonic observables are only slightly affected by the interaction with the baryon-free fluid.Comment: 17 pages, 3 figures, submitted to the issue of Phys. of Atomic Nuclei dedicated to S.T. Belyaev on the occasion of his 80th birthday, typos correcte

    NLO QCD procedure of the semi-inclusive deep inelastic scattering data analysis with respect to the light quark polarized sea

    Full text link
    The semi-inclusive deep inelastic scattering (SIDIS) process is considered. A theoretical procedure is proposed allowing the direct extraction from the SIDIS data of the first moments of the polarized valence distributions and of the first moment difference of the light sea quark polarized distributions in the next to leading QCD order. The validity of the procedure is confirmed by the respective simulations
    corecore