264,538 research outputs found

    Dual versions of N=2 supergravity and spontaneous supersymmetry breaking

    Full text link
    In this paper, using a model of N=2 supergravity - vector multiplets interaction with the scalar field geometry SU(1,m)/SU(m)U(1)SU(1,m)/SU(m)\otimes U(1) as an example, we show that even when the geometry is fixed one can have a whole family of the Lagrangians that differ by the vector field duality transformations. As a byproduct, for this geometry we have constructed a model of (m-1) vector multiplets interacting with the hidden sector admitting spontaneous supersymmetry breaking with two arbitrary scales and without a cosmological term.Comment: 10 pages, LaTeX, IHEP preprint 94-9

    On Wilson Criterion

    Full text link
    U(1) gauge theory with the Villain action on a cubic lattice approximation of three- and four-dimensional torus is considered. The naturally chosen correlation functions converge to the correlation functions of the R-gauge electrodynamics on three- and four-dimensional torus as the lattice spacing approaches zero only for the special scaling. This special scaling depends on a choice of a correlation function system. Another scalings give the degenerate continuum limits. The Wilson criterion for the confinement is ambiguous. The asymptotics of the smeared Wilson loop integral for the large loop perimeters is defined by the density of the loop smearing over a torus which is transversal to the loop plane. When the initial torus radius tends to infinity the correlation functions converge to the correlation functions of the R-gauge Euclidean electrodynamics.Comment: latex, 6 page

    Interaction of instantons in a gauge theory forcing their identical orientation

    Full text link
    A gauge theory model in which there exists a specific interaction between instantons is considered. An effective action describing this interaction possesses a minimum when the instantons have identical orientation. The considered interaction might provide a phase transition into the state where instantons have a preferred orientation. This phase of the gauge-field theory is important because it can give the description of gravity in the framework of the gauge theory.Comment: 8 pages, Revte

    On the problem of catastrophic relaxation in superfluid 3-He-B

    Full text link
    In this Letter we discussed the parametric instability of texture of homogeneous (in time) spin precession, explaining how spatial inhomogeneity of the texture may change the threshold of the instability in comparison with idealized spatial homogeneous case, considered in our JETP Letter \textbf{83}, 530 (2006), cond-mat/0605386. This discussion is inspired by critical Comment of I.A. Fomin (cond-mat/0606760) related to the above questions. In addition we considered here results of direct numerical simulations of the full Leggett-Takagi equation of motion for magnetization in superfluid 3He-B and experimental data for magnetic field dependence of the catastrophic relaxation, that provide solid support of the theory of this phenomenon, presented in our 2006 JETP Letter.Comment: 5 pages, 1 fig. included, JETP Lett. style, submitted to JETP Lett. as response to Comment cond-mat/060676

    Gate-controlled superconductivity in diffusive multiwalled carbon nanotube

    Get PDF
    We have investigated electrical transport in a diffusive multiwalled carbon nanotube contacted using superconducting leads made of Al/Ti sandwich structure. We find proximity-induced superconductivity with measured critical currents up to I_cm = 1.3 nA, tunable by gate voltage down to 10 pA. The supercurrent branch displays a finite zero bias resistance which varies as R_0 proportional to I_cm^-alpha with alpha=0.74. Using IV-characteristics of junctions with phase diffusion, a good agreement is obtained with Josephson coupling energy in the long, diffusive junction model of A.D Zaikin and G.F. Zharkov (Sov. J. Low Temp. Phys. 7, 184 (1981)).Comment: 5 pages, 4 figure

    Strongly anharmonic current-phase relation in ballistic graphene Josephson junctions

    Full text link
    Motivated by a recent experiment directly measuring the current-phase relation (CPR) in graphene under the influence of a superconducting proximity effect, we here study the temperature dependence of the CPR in ballistic graphene SNS Josephson junctions within the the self-consistent tight-binding Bogoliubov-de Gennes (BdG) formalism. By comparing these results with the standard Dirac-BdG method, where rigid boundary conditions are assumed at the SN interfaces, we show on a crucial importance of both proximity effect and depairing by current for the CPR. The proximity effect grows with temperature and reduces the skewness of the CPR towards the harmonic result. In short junctions (L<ξL<\xi) current depairing is also important and gives rise to a critical phase ϕc<π/2\phi_c<\pi/2 over a wide range of temperatures and doping levels.Comment: 7 pages, 4 figures. v2 contains very minor change

    Direct photon spectrum and elliptic flow produced from Pb+Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV at the CERN Large Hadron Collider within an integrated hydrokinetic model

    Get PDF
    The photon transverse momentum spectrum and its anisotropy from Pb+Pb collisions at the CERN Large Hadron Collider energy sNN=2.76\sqrt {s_{NN}}=2.76 TeV are investigated within the integrated hydrokinetic model (iHKM). Photon production is accumulated from the different processes at the various stages of relativistic heavy ion collisions: from the primary hard photons of very early stage of parton collisions to the thermal photons from equilibrated quark-gluon and hadron gas stages. Along the way a hadronic medium evolution is treated in two distinct, in a sense opposite, approaches: chemically equilibrated and chemically frozen system expansion. Studying the centrality dependence of the results obtained allows us to conclude that a relatively strong transverse momentum anisotropy of thermal radiation is suppressed by prompt photon emission which is an isotropic. We find out that this effect is getting stronger as centrality increases because of the simultaneous increase in the relative contribution of prompt photons in the soft part of the spectra. The substantial results obtained in iHKM with nonzero viscosity (η/s=0.08\eta/s=0.08) for photon spectra and v2v_2 coefficients are mostly within the error bars of experimental data, but there is some systematic underestimation of both observables for the near central events. We claim that a situation could be significantly improved if an additional photon radiation that accompanies the presence of a deconfined environment is included. Since a matter of a space-time layer where hadronization takes place is actively involved in anisotropic transverse flow, both positive contributions to the spectra and v2v_2 are considerable, albeit such an argument needs further research and elaboration.Comment: 21 pages, 6 figure
    corecore