316,136 research outputs found
Dual versions of N=2 supergravity and spontaneous supersymmetry breaking
In this paper, using a model of N=2 supergravity - vector multiplets
interaction with the scalar field geometry as an
example, we show that even when the geometry is fixed one can have a whole
family of the Lagrangians that differ by the vector field duality
transformations. As a byproduct, for this geometry we have constructed a model
of (m-1) vector multiplets interacting with the hidden sector admitting
spontaneous supersymmetry breaking with two arbitrary scales and without a
cosmological term.Comment: 10 pages, LaTeX, IHEP preprint 94-9
On Wilson Criterion
U(1) gauge theory with the Villain action on a cubic lattice approximation of
three- and four-dimensional torus is considered. The naturally chosen
correlation functions converge to the correlation functions of the R-gauge
electrodynamics on three- and four-dimensional torus as the lattice spacing
approaches zero only for the special scaling. This special scaling depends on a
choice of a correlation function system. Another scalings give the degenerate
continuum limits. The Wilson criterion for the confinement is ambiguous. The
asymptotics of the smeared Wilson loop integral for the large loop perimeters
is defined by the density of the loop smearing over a torus which is
transversal to the loop plane. When the initial torus radius tends to infinity
the correlation functions converge to the correlation functions of the R-gauge
Euclidean electrodynamics.Comment: latex, 6 page
Interaction of instantons in a gauge theory forcing their identical orientation
A gauge theory model in which there exists a specific interaction between
instantons is considered. An effective action describing this interaction
possesses a minimum when the instantons have identical orientation. The
considered interaction might provide a phase transition into the state where
instantons have a preferred orientation. This phase of the gauge-field theory
is important because it can give the description of gravity in the framework of
the gauge theory.Comment: 8 pages, Revte
The nuclear electric polarizability of 6He
We present an estimate of the nuclear electric polarizability of the 6He halo
nucleus based on six-body microscopic calculations. Wave functions are obtained
from semi-realistic two-body interactions using the hyperspherical harmonics
expansion method. The polarizability is calculated as a sum rule of the dipole
response function using the Lanczos algorithm and also by integrating the
photo-absorption cross section calculated via the Lorentz integral transform
method. We obtain alpha_E=1.00(14) fm^3, which is much smaller than the
published value 1.99(40) fm^3 extracted from experimental data. This points
towards a potential disagreement between microscopic theories and experimental
observations.Comment: 8 pages, 8 figures, minor changes, added error analysi
Experimental observation of the longitudinal plasma excitation in intrinsic Josephson junctions
We have investigated the current-voltage characteristics (IVCs) of intrinsic
Josephson junctions (IJJs). Recently, it is predicted that the longitudinal
plasma wave can be excited by the parametric resonance in IJJs. Such an
excitation induces a singularity called as breakpoint region around switch back
region in the IVC. We have succeeded in the observation of the breakpoint
region in the IVC of the mesa with 5 IJJs at 4.2 K. Furthermore, it is found
that the temperature dependence of the breakpoint current is in agreement with
the theoretical prediction. This suggests that the wave number of the excited
plasma wave varies with temperature.Comment: 7 pages, 7 figures. Dubna-Nano2008, Accepted for JPCS
On the problem of catastrophic relaxation in superfluid 3-He-B
In this Letter we discussed the parametric instability of texture of
homogeneous (in time) spin precession, explaining how spatial inhomogeneity of
the texture may change the threshold of the instability in comparison with
idealized spatial homogeneous case, considered in our JETP Letter \textbf{83},
530 (2006), cond-mat/0605386. This discussion is inspired by critical Comment
of I.A. Fomin (cond-mat/0606760) related to the above questions. In addition we
considered here results of direct numerical simulations of the full
Leggett-Takagi equation of motion for magnetization in superfluid 3He-B and
experimental data for magnetic field dependence of the catastrophic relaxation,
that provide solid support of the theory of this phenomenon, presented in our
2006 JETP Letter.Comment: 5 pages, 1 fig. included, JETP Lett. style, submitted to JETP Lett.
as response to Comment cond-mat/060676
Gate-controlled superconductivity in diffusive multiwalled carbon nanotube
We have investigated electrical transport in a diffusive multiwalled carbon
nanotube contacted using superconducting leads made of Al/Ti sandwich
structure. We find proximity-induced superconductivity with measured critical
currents up to I_cm = 1.3 nA, tunable by gate voltage down to 10 pA. The
supercurrent branch displays a finite zero bias resistance which varies as R_0
proportional to I_cm^-alpha with alpha=0.74. Using IV-characteristics of
junctions with phase diffusion, a good agreement is obtained with Josephson
coupling energy in the long, diffusive junction model of A.D Zaikin and G.F.
Zharkov (Sov. J. Low Temp. Phys. 7, 184 (1981)).Comment: 5 pages, 4 figure
The c-axis charge traveling wave in coupled system of Josephson junctions
We demonstrate a manifestation of the charge traveling wave along the c-axis
(TW) in current voltage characteristics of coupled Josephson junctions in
high- superconductors. The branches related to the TW with different
wavelengths are found for the stacks with different number of Josephson
junctions at different values of system's parameters. Transitions between the
TW branches and the outermost branch are observed. Time dependence of the
electric charge in the superconducting layers and charge-charge correlation
functions for TW and outermost branches show different behavior with bias
current. We propose an experimental testing of the TW by microwave irradiation.Comment: Supplement : http://theor.jinr.ru/~hamdipur/lambda0.av
Strongly anharmonic current-phase relation in ballistic graphene Josephson junctions
Motivated by a recent experiment directly measuring the current-phase
relation (CPR) in graphene under the influence of a superconducting proximity
effect, we here study the temperature dependence of the CPR in ballistic
graphene SNS Josephson junctions within the the self-consistent tight-binding
Bogoliubov-de Gennes (BdG) formalism. By comparing these results with the
standard Dirac-BdG method, where rigid boundary conditions are assumed at the
SN interfaces, we show on a crucial importance of both proximity effect and
depairing by current for the CPR. The proximity effect grows with temperature
and reduces the skewness of the CPR towards the harmonic result. In short
junctions () current depairing is also important and gives rise to a
critical phase over a wide range of temperatures and doping
levels.Comment: 7 pages, 4 figures. v2 contains very minor change
Photon spectra and anisotropic flow in heavy ion collisions at the top RHIC energy within the integrated hydrokinetic model with photon hadronization emission
The integrated HydroKinetic Model (iHKM) is applied to analyse the results of
direct photon spectra as well as elliptic and triangular flow measurements in
200A GeV Au+Au collisions at RHIC for different centrality bins. Experiments
detect the strong centrality dependence of photon elliptic and triangular flow
as increasing -coefficients towards peripheral collisions. The photon
production in the model is accumulated from the different sources along with
the process of relativistic heavy ion collision developing. Those include the
primary hard photons from the parton collisions at the very early stage of the
process, the photons generated at the pre-thermal phase of dense matter
evolution, then thermal photons at partially equilibrated hydrodynamic
quark-gluon stage, together with radiation displaying a confinement and,
finally, from the hadron gas phase. Along the way a hadronic medium evolution
is treated in two distinct, in a sense opposite, approaches: chemically
equilibrium and chemically non-equilibrium, namely, chemically frozen
expansion. We find the description of direct photon spectra, elliptic and
triangular flow are significantly improved, similar to that found in iHKM for
the LHC energies, if an additional portion of photon radiation associated with
the confinement processes, the "hadronization photons", is included into
consideration.Comment: 28 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1812.0276
- …