156,393 research outputs found
Bayesian analysis of a Tobit quantile regression model
This paper develops a Bayesian framework for Tobit quantile regression. Our approach
is organized around a likelihood function that is based on the asymmetric Laplace dis-
tribution, a choice that turns out to be natural in this context. We discuss families
of prior distribution on the quantile regression vector that lead to proper posterior
distributions with ¯nite moments. We show how the posterior distribution can be
sampled and summarized by Markov chain Monte Carlo methods. A method for com-
paring alternative quantile regression models is also developed and illustrated. The
techniques are illustrated with both simulated and real data. In particular, in an em-
pirical comparison, our approach out-performed two other common classical estimators
Coulomb blockade and Bloch oscillations in superconducting Ti nanowires
Quantum fluctuations in quasi-one-dimensional superconducting channels
leading to spontaneous changes of the phase of the order parameter by ,
alternatively called quantum phase slips (QPS), manifest themselves as the
finite resistance well below the critical temperature of thin superconducting
nanowires and the suppression of persistent currents in tiny superconducting
nanorings. Here we report the experimental evidence that in a current-biased
superconducting nanowire the same QPS process is responsible for the insulating
state -- the Coulomb blockade. When exposed to RF radiation, the internal Bloch
oscillations can be synchronized with the external RF drive leading to
formation of quantized current steps on the I-V characteristic. The effects
originate from the fundamental quantum duality of a Josephson junction and a
superconducting nanowire governed by QPS -- the QPS junction (QPSJ).Comment: 5 pages, 4 figure
Dispersion and transitions of dipolar plasmon modes in graded plasmonic waveguides
Coupled plasmon modes are studied in graded plasmonic waveguides, which are
periodic chains of metallic nanoparticles embedded in a host with gradually
varying refractive indices. We identify three types of localized modes called
"light", "heavy", and "light-heavy" plasmonic gradons outside the passband,
according to various degrees of localization. We also demonstrate new
transitions among extended and localized modes when the interparticle
separation is smaller than a critical , whereas the three types of
localized modes occur for , with no extended modes. The transitions can
be explained with phase diagrams constructed for the lossless metallic systems.Comment: Preliminary results have been presented at ETOPIM 7. Submitted to
Appl. Phys. Let
Dielectric behavior of oblate spheroidal particles: Application to erythrocytes suspensions
We have investigated the effect of particle shape on the eletrorotation (ER)
spectrum of living cells suspensions. In particular, we consider coated oblate
spheroidal particles and present a theoretical study of ER based on the
spectral representation theory. Analytic expressions for the characteristic
frequency as well as the dispersion strength can be obtained, thus simplifying
the fitting of experimental data on oblate spheroidal cells that abound in the
literature. From the theoretical analysis, we find that the cell shape, coating
as well as material parameters can change the ER spectrum. We demonstrate good
agreement between our theoretical predictions and experimental data on human
erthrocytes suspensions.Comment: RevTex; 5 eps figure
Many-body dipole-induced dipole model for electrorheological fluids
Theoretical investigations on electrorheological (ER) fluids usually rely on
computer simulations. An initial approach for these studies would be the
point-dipole (PD) approximation, which is known to err considerably when the
particles approach and finally touch due to many-body and multipolar
interactions. Thus various work attempted to go beyond the PD model. Being
beyond the PD model, previous attempts have been restricted to either
local-field effects only or multipolar effects only, but not both. For
instance, we recently proposed a dipole-induced-dipole (DID) model which is
shown to be both more accurate than the PD model and easy to use. This work is
necessary because the many-body (local-field) effect is included to put forth
the many-body DID model. The results show that the multipolar interactions can
indeed be dominant over the dipole interaction, while the local-field effect
may yield an important correction.Comment: RevTeX, 3 eps figure
Nonlinear ac responses of electro-magnetorheological fluids
We apply a Langevin model to investigate the nonlinear ac responses of
electro-magnetorheological (ERMR) fluids under the application of two crossed
dc magnetic (z axis) and electric (x axis) fields and a probing ac sinusoidal
magnetic field. We focus on the influence of the magnetic fields which can
yield nonlinear behaviors inside the system due to the particles with a
permanent magnetic dipole moment.
Based on a perturbation approach, we extract the harmonics of the magnetic
field and orientational magnetization analytically. To this end, we find that
the harmonics are sensitive to the degree of anisotropy of the structure as
well as the field frequency. Thus, it is possible to real-time monitor the
structure transformation of ERMR fluids by detecting the nonlinear ac
responses.Comment: 21 pages, 4 figure
Giant enhanced optical nonlinearity of colloidal nanocrystals with a graded-index host
The effective linear and third-order nonlinear optical properties of metallic
colloidal crystal immersed in a graded-index host fluid are investigated
theoretically. The local electric fields are extracted self-consistently based
on the layer-to-layer interactions, which are readily given by the Lekner
summation method. The resultant optical absorption and nonlinearity enhancement
show a series of sharp peaks, which merge in a broadened resonant band. The
sharp peaks become a continuous band for increasing packing density and number
of layers. We believe that the sharp peaks arise from the in-plane dipolar
interactions and the surface plasmon resonance, whereas the continuous band is
due to the presence of the gradient in the host refractive index. These results
have not been observed in homogeneous and randomly-dispersed colloids, and thus
would be of great interest in optical nanomaterial engineering.Comment: Submitted to Applied Physics Letter
Tunable Localization and Oscillation of Coupled Plasmon Waves in Graded Plasmonic Chains
The localization (confinement) of coupled plasmon modes, named as gradons,
has been studied in metal nanoparticle chains immersed in a graded dielectric
host. We exploited the time evolution of various initial wavepackets formed by
the linear combination of the coupled modes. We found an important interplay
between the localization of plasmonic gradons and the oscillation in such
graded plasmonic chains. Unlike in optical superlattices, gradient cannot
always lead to Bloch oscillations, which can only occur for wavepackets
consisting of particular types of gradons. Moreover, the wavepackets will
undergo different forms of oscillations. The correspondence can be applied to
design a variety of optical devices by steering among various oscillations.Comment: Sumitted to Journal of Applied Physic
Prior elicitation in Bayesian quantile regression for longitudinal data
© 2011 Alhamzawi R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original auhor and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.In this paper, we introduce Bayesian quantile regression for longitudinal data in terms of informative priors and Gibbs sampling. We develop methods for eliciting prior distribution to incorporate historical data gathered from similar previous studies. The methods can be used either with no prior data or with complete prior data. The advantage of the methods is that the prior distribution is changing automatically when we change the quantile. We propose Gibbs sampling methods which are computationally efficient and easy to implement. The methods are illustrated with both simulation and real data.This article is made available through the Brunel Open Access Publishing Fund
- …