3,536 research outputs found

    Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons

    Get PDF
    Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep

    Oxygen-regulated transcription factors and their role in pulmonary disease

    Get PDF
    The transcription factors nuclear factor interleukin-6 (NF-IL6), early growth response-1 (EGR-1) and hypoxia-inducible factor-1 (HIF-1) have important roles in the molecular pathophysiology of hypoxia-associated pulmonary disease. NF-IL6 controls the production of interleukin (IL)-6 in vascular endothelial cells, which may have anti-inflammatory activity by counteracting effects of IL-1 and IL-8. EGR-1 controls the production of tissue factor by macrophages, which triggers fibrin deposition in the pulmonary vasculature. HIF-1 activates the expression of the vasoconstrictor endothelin-1 in vascular endothelial cells. Angiotensin II induces HIF-1 expression and hypertrophy of pulmonary arterial smooth muscle cells. HIF-1 might therefore have multiple roles in the pathogenesis of pulmonary vascular remodeling

    Amyloid β-peptide directly induces spontaneous calcium transients, delayed intercellular calcium waves and gliosis in rat cortical astrocytes

    Get PDF
    The contribution of astrocytes to the pathophysiology of AD (Alzheimer's disease) and the molecular and signalling mechanisms that potentially underlie them are still very poorly understood. However, there is mounting evidence that calcium dysregulation in astrocytes may be playing a key role. Intercellular calcium waves in astrocyte networks in vitro can be mechanically induced after Aβ (amyloid β-peptide) treatment, and spontaneously forming intercellular calcium waves have recently been shown in vivo in an APP (amyloid precursor protein)/PS1 (presenilin 1) Alzheimer's transgenic mouse model. However, spontaneous intercellular calcium transients and waves have not been observed in vitro in isolated astrocyte cultures in response to direct Aβ stimulation in the absence of potentially confounding signalling from other cell types. Here, we show that Aβ alone at relatively low concentrations is directly able to induce intracellular calcium transients and spontaneous intercellular calcium waves in isolated astrocytes in purified cultures, raising the possibility of a potential direct effect of Aβ exposure on astrocytes in vivo in the Alzheimer's brain. Waves did not occur immediately after Aβ treatment, but were delayed by many minutes before spontaneously forming, suggesting that intracellular signalling mechanisms required sufficient time to activate before intercellular effects at the network level become evident. Furthermore, the dynamics of intercellular calcium waves were heterogeneous, with distinct radial or longitudinal propagation orientations. Lastly, we also show that changes in the expression levels of the intermediate filament proteins GFAP (glial fibrillary acidic protein) and S100B are affected by Aβ-induced calcium changes differently, with GFAP being more dependent on calcium levels than S100B

    Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature

    Get PDF
    Methane activation and utilization are among the major challenges of modern science. Methane is potentially an important feedstock for manufacturing value-added fuels and chemicals. However, most known processes require excessive operating temperatures and exhibit insufficient selectivity. Here, we demonstrate a photochemical looping strategy for highly selective stoichiometric conversion of methane to ethane at ambient temperature over silver–heteropolyacid–titania nanocomposites. The process involves a stoichiometric reaction of methane with highly dispersed cationic silver under illumination, which results in the formation of methyl radicals. Recombination of the generated methyl radicals leads to the selective, and almost quantitative, formation of ethane. Cationic silver species are simultaneously reduced to metallic silver. The silver–heteropolyacid–titania nanocomposites can be reversibly regenerated in air under illumination at ambient temperature. The photochemical looping process achieves a methane coupling selectivity of over 90%, a quantitative yield of ethane of over 9%, high quantum efficiency (3.5% at 362 nm) and excellent stability

    Microfluidic cell sorter with integrated piezoelectric actuator

    Get PDF
    We demonstrate a low-power (<0.1 mW), low-voltage (<10 Vp-p) on-chip piezoelectrically actuated micro-sorter that can deflect single particles and cells at high-speed. With rhodamine in the stream, switching of flow between channels can be visualized at high actuation frequency (~1.7 kHz). The magnitude of the cell deflection can be precisely controlled by the magnitude and waveform of input voltage. Both simulation and experimental results indicate that the drag force imposed on the suspended particle/cell by the instantaneous fluid displacement can alter the trajectory of the particle/cell of any size, shape, and density of interest in a controlled manner. The open-loop E. Coli cell deflection experiment demonstrates that the sorting mechanism can produce a throughput of at least 330 cells/s, with a promise of a significantly higher throughput for an optimized design. To achieve close-loop sorting operation, fluorescence detection, real-time signal processing, and field-programmable-gate-array (FPGA) implementation of the control algorithms were developed to perform automated sorting of fluorescent beads. The preliminary results show error-free sorting at a sorting efficiency of ~70%. Since the piezoelectric actuator has an intrinsic response time of 0.1–1 ms and the sorting can be performed under high flowrate (particle speed of ~1–10 cm/s), the system can achieve a throughput of >1,000 particles/s with high purity

    Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    Get PDF
    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders

    Biocompatibility of subretinal parylene-based Ti/Pt microelectrode array in rabbit for further artificial vision studies

    Get PDF
    To evaluate the biocompatibility of subretinal implanted parylene-based Ti/Pt microelectrode arrays (MEA). Eyes were enucleated 3 months after MEAs were implanted into the subretinal space of rabbits. Morphological changes of the retinas were investigated by H&E staining. Immunohistochemical staining for glial fibrillary acidic protein and opsin were performed to evaluate changes in Muller cells and photoreceptors in the retinas. Retina tissue around the array remained intact. Photoreceptor degeneration and glial cell activation were observed in the retina overlaying the MEA implant. However, the cells in the inner retinal layers were preserved. Photoreceptor degeneration and glial cell activation at the MEA–retina interface are expected to be a normal reaction to implantation. Material used in this experiment has good biocompatibility within the subretinal environment and is expected to be promising in the further retinal prosthesis studies

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
    • …
    corecore