2,516 research outputs found

    Modeling municipal yields with (and without) bond insurance

    Get PDF
    YesWe develop an intensity-based model of municipal yields, making simultaneous use of the CDS premiums of the insurers and both insured and uninsured municipal bond transactions. We estimate the model individually for 61 municipal issuers by exploiting the dramatic decline in credit quality of the bond insurers from July 2007 to June 2008, and decompose the municipal yield spread based on the estimated parameters. The decomposition reveals a dominant role of the liquidity component as well as interactions between liquidity and default similar to those modeled by Chen et al. (2016) for corporate bonds. Towards the end of the sample period, our model also reproduces the "yield inversion" phenomenon documented by Bergstresser et al. (2010)

    High-frequency hopping conductivity in the quantum Hall effect regime: Acoustical studies

    Full text link
    The high-frequency conductivity of Si delta-doped GaAs/AlGaAs heterostructures is studied in the integer quantum Hall effect (QHE) regime, using acoustic methods. Both the real and the imaginary parts of the complex conductivity are determined from the experimentally observed magnetic field and temperature dependences of the velocity and the attenuation of a surface acoustic wave. It is demonstrated that in the structures studied the mechanism of low-temperature conductance near the QHE plateau centers is hopping. It is also shown that at magnetic fields corresponding to filling factors 2 and 4, the doped Si delta- layer efficiently shunts the conductance in the two-dimensional electron gas (2DEG) channel. A method to separate the two contributions to the real part of the conductivity is developed, and the localization length in the 2DEG channel is estimated.Comment: 8pages, 9 figure

    Low-threshold organic laser based on an oligofluorene truxene with low optical losses

    Get PDF
    A blue-emitting distributed feedback laser based on a star-shaped oligofluorene truxene molecule is presented. The gain, loss, refractive index, and (lack of) anisotropy are measured by amplified spontaneous emission and variable-angle ellipsometry. The waveguide losses are very low for an organic semiconductor gain medium, particularly for a neat film. The results suggest that truxenes are promising for reducing loss, a key parameter in the operation of organic semiconductor lasers. Distributed feedback lasers fabricated from solution by spin-coating show a low lasing threshold of 270 W/cm(2) and broad tunability across 25 nm in the blue part of the spectrum

    Density of states and magnetoconductance of disordered Au point contacts

    Full text link
    We report the first low temperature magnetotransport measurements on electrochemically fabricated atomic scale gold nanojunctions. As T0T \to 0, the junctions exhibit nonperturbatively large zero bias anomalies (ZBAs) in their differential conductance. We consider several explanations and find that the ZBAs are consistent with a reduced local density of states (LDOS) in the disordered metal. We suggest that this is a result of Coulomb interactions in a granular metal with moderate intergrain coupling. Magnetoconductance of atomic scale junctions also differs significantly from that of less geometrically constrained devices, and supports this explanation.Comment: 5 pages, 5 figures. Accepted to PRB as Brief Repor

    Exact Results for Tunneling Problems of Bogoliubov Excitations in the Critical Supercurrent State

    Full text link
    We show the exact solution of Bogoliubov equations at zero-energy in the critical supercurrent state for arbitrary shape of potential barrier. With use of this solution, we prove the absence of perfect transmission of excitations in the low-energy limit by giving the explicit expression of transmission coefficient. The origin of disappearance of perfect transmission is the emergence of zero-energy density fluctuation near the potential barrier.Comment: 6 pages, 3 figures; Proceedings of QFS200

    Landau and dynamical instabilities of Bose-Einstein condensates with superfluid flow in a Kronig-Penney potential

    Full text link
    We study the elementary excitations of Bose-Einstein condensates in a one-dimensional periodic potential and discuss the stability of superfluid flow based on the Kronig-Penney model. We analytically solve the Bogoliubov equations and calculate the excitation spectrum. The Landau and dynamical instabilities occur in the first condensate band when the superfluid velocity exceeds certain critical values, which agrees with the result of condensates in a sinusoidal potential. It is found that the onset of the Landau instability coincides with the point where the perfect transmission of low-energy excitations is forbidden, while the dynamical instability occurs when the effective mass is negative. It is well known that the condensate band has a peculiar structure called swallowtail when the periodic potential is shallow compared to the mean field energy. We find that the upper side of the swallowtail is dynamically unstable although the excitations have the linear dispersion reflecting the positive effective mass.Comment: 6 pages, 2 figures, Proceedings of the International Symposium on Quantum Fluids and Solids (QFS2006

    1/f Noise in Electron Glasses

    Full text link
    We show that 1/f noise is produced in a 3D electron glass by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures. The low frequency noise spectrum goes as \omega^{-\alpha} with \alpha slightly larger than 1. This result together with the temperature dependence of \alpha and the noise amplitude are in good agreement with the recent experiments. These results hold true both with a flat, noninteracting density of states and with a density of states that includes Coulomb interactions. In the latter case, the density of states has a Coulomb gap that fills in with increasing temperature. For a large Coulomb gap width, this density of states gives a dc conductivity with a hopping exponent of approximately 0.75 which has been observed in recent experiments. For a small Coulomb gap width, the hopping exponent approximately 0.5.Comment: 8 pages, Latex, 6 encapsulated postscript figures, to be published in Phys. Rev.

    Analysis of dietary trends in Chinese adolescents from 1991 to 2011

    Get PDF
    Background and Objectives: To examine temporal trends in dietary energy, fat, carbohydrate, protein, sodium and potassium intake of Chinese adolescents aged 12 - 17 years by sex and urbanicity, using data from the China Health and Nutrition Survey. Methods and Study Design: Individual level, consecutive 3 - day 24-hour recalls were analyzed from survey years 1991 (n=504), 2000 (n=665), and 2011 (n=267) from nine provinces representing a range of geography, economic development, and health indicators in China. Linear multivariable regression models were conducted to predict mean intakes of energy, macronutrients, sodium, and potassium. Models were adjusted for age, per capita income, parental education, region, and family size. Results: From 1991 to 2011, total energy consumption decreased among both sexes and all urbanicity groups (p < 0.05). Sodium intake decreased in all sex and urbanicity groups except the high urbanicity group, which was the only group to show significant change in potassium intake (p < 0.05). Sodium-potassium ratios decreased overall and across both sexes (p < 0.05). However, the major observed shift was a structural change from carbohydrates to fat and protein. Both sexes showed decrease in carbohydrate-derived energy (p < 0.05). Proportion of fat-derived energy increased in female adolescents. Proportion of protein-derived energy increased in male adolescents, as well as in the low and high urbanicity groups (p < 0.01). Conclusions: This suggests Chinese adolescents are transitioning to a low carbohydrate diet. Urbanicity appears to play a role in sodium, potassium and protein intake. Improvements of sodiumpotassium ratios are primarily due to decreased sodium intake and require further reduction efforts

    Free expansion of Bose-Einstein condensates with quantized vortices

    Full text link
    The expansion of Bose-Einstein condensates with quantized vortices is studied by solving numerically the time-dependent Gross-Pitaevskii equation at zero temperature. For a condensate initially trapped in a spherical harmonic potential, we confirm previous results obtained by means of variational methods showing that, after releasing the trap, the vortex core expands faster than the radius of the atomic cloud. This could make the detection of vortices feasible, by observing the depletion of the density along the axis of rotation. We find that this effect is significantly enhanced in the case of anisotropic disc-shaped traps. The results obtained as a function of the anisotropy of the initial configuration are compared with the analytic solution for a noninteracting gas in 3D as well as with the scaling law predicted for an interacting gas in 2D.Comment: 5 pages, 6 postscript figure

    Theory of bound polarons in oxide compounds

    Full text link
    We present a multilateral theoretical study of bound polarons in oxide compounds MgO and \alpha-Al_2O_3 (corundum). A continuum theory at arbitrary electron-phonon coupling is used for calculation of the energies of thermal dissociation, photoionization (optically induced release of an electron (hole) from the ground self-consistent state), as well as optical absorption to the non-relaxed excited states. Unlike the case of free strong-coupling polarons, where the ratio \kappa of the photoionization energy to the thermal dissociation energy was shown to be always equal to 3, here this ratio depends on the Froehlich coupling constant \alpha and the screened Coulomb interaction strength \beta. Reasonable variation of these two parameters has demonstrated that the magnitude of \kappa remains usually in the narrow interval from 1 to 2.5. This is in agreement with atomistic calculations and experimental data for hole O^- polarons bound to the cation vacancy in MgO. The thermal dissociation energy for the ground self-consistent state and the energy of the optically induced charge transfer process (hops of a hole between O^{2-} ions) have been calculated using the quantum-chemical method INDO. Results obtained within the two approaches for hole O^- polarons bound by the cation vacancies (V^-) in MgO and by the Mg^{2+} impurity (V_{Mg}) in corundum are compared to experimental data and to each other. We discuss a surprising closeness of the results obtained on the basis of independent models and their agreement with experiment.Comment: 13 pages, 2 figures, 2 tables, E-mail addresses: [email protected], [email protected]
    corecore