127 research outputs found

    Shear response behavior of STF/kevlar composite fabric in picture frame test

    Get PDF
    The picture frame test was applied to compare Kevlar neat and STF/Kevlar composite fabrics. The digital image correlation markers method was applied to measure the shear deformation behavior of the fabric in real-time under three loading rates: 100, 500, and 1000 mm/min. A theoretical model was applied to evaluate the effect of STF on the shear deformation stiffness of the fabric and cells and on the energy absorption during shear deformation. The results show that the STF/Kevlar composite fabric has a larger load-carrying capacity than the neat fabric in the picture frame test, and has obvious loading rate dependence. The yarn cell of the fabric undergoes slip deformation and reaches a shear-locked state; the shear modulus and the cell spring torsion coefficient of the STF/Kevlar composite fabric are significantly higher than those of neat fabric. The shear thickening behavior of STF occurs at higher loading rates, and the composite fabric has the highest shear deformation stiffness and shear energy absorption level

    Oncolytic vaccinia therapy of squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC) of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68) as an oncolytic agent against a panel of six human head and neck SCC cell lines.</p> <p>Results</p> <p>All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase) as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs) were observed in four of the cell lines. At a multiplicity of infection (MOI) of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 10<sup>6 </sup>pfu) intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression.</p> <p>Conclusion</p> <p>These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both <it>in vitro </it>and <it>in vivo</it>, and support its continued investigation in future clinical trials.</p

    Durvalumab with or without tremelimumab for patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a systematic review and meta-analysis

    Get PDF
    ObjectiveHead and neck squamous cell carcinoma (HNSCC) ranks as the sixth most prevalent cancer worldwide, significantly impacting patients’ quality of life. Immune checkpoint inhibitors (ICI) have been employed in the treatment of recurrent/metastatic (R/M)-HNSCC patients. This meta-analysis aims to assess the efficacy and safety of durvalumab monotherapy compared to the combination of durvalumab and tremelimumab in R/M-HNSCC patients.MethodsRelevant studies were systematically searched in PubMed, Embase, and Cochrane Library databases. All articles comparing durvalumab monotherapy with the combination with durvalumab and tremelimumab in R/M-HNSCC treatment were included. Additionally, the references of identified studies were screened if necessary.ResultA total of 1298 patients from three studies comparing durvalumab with durvalumab and tremelimumab in treating R/M-HNSCC were include in this meta-analysis. Our findings revealed no significant difference in objective response rate (ORR) [odds ratio (OR): 1.15, 95% confidence interval (CI): 0.85 to 1.56, P = 0.36] and disease control rate (DCR) (OR=1.08, 95%CI: 0.86 to 1.37, P = 0.51). Similar outcomes were observed in overall survival (OS), progression-free survival (PFS), and duration of response (DoR). Regarding safety, there was no significant difference in the incidence of treatment-related adverse events (trAEs) between the two groups (OR=1.26, 95%CI: 0.81 to 1.94, P = 0.30). However, patients treated with the combination therapy exhibited a higher incidence of grade 3-4 trAEs (OR=1.93, 95%CI: 1.36 to 2.73, P = 0.0002) and a greater likelihood of discontinuing treatment due to trAEs (OR=2.07, 95%CI: 1.12 to 3.85, P = 0.02). There was no significant difference in the occurrence of severe trAEs leading to death (OR=1.36, 95%CI: 0.47 to 3.96, P = 0.57).ConclusionThis meta-analysis suggests that R/M-HNSCC patients receiving the combination of durvalumab and tremelimumab may achieve comparable outcomes in terms of ORR, DCR, OS, PFS, and DoR, without significant differences. However, the combination therapy is associated with a higher incidence of grade 3-4 trAEs and an increased likelihood of treatment discontinuation due to trAEs. These findings highlight the need for cautious consideration of the combination of durvalumab and tremelimumab in R/M-HNSCC patients, which should be further evaluated in high-quality studies

    An improved fault control strategy for virtual synchronous generator with the coordination of STATCOM during unbalanced fault

    Get PDF
    The virtual synchronous generator (VSG) is a good solution for stabilizing the power system with high penetration of renewable energy. However, in case of serious unbalanced voltage disturbance/fault, the conventional VSG may lose voltage, inertia, and damping support characteristics to the grid and even can cause disconnection of renewable energy. This paper proposes an improved fault control strategy for VSG with the coordination of STATCOM. The proposed method can provide sufficient voltage support while keeping continuous system inertia and damping support under severe unbalanced fault. In the paper, an improved VSG and STATCOM control topology based on positive and negative sequence current control are first proposed so as to keep the damping and inertia support to grid during the grid fault. Secondly, the voltage support control method for the VSG with improved topology during unbalanced fault is introduced, which can achieve multiple control objectives, in terms of voltage support, current limitation, and active power output simultaneously. Then a coordination control scheme of improved VSG and STATCOM is developed so as to optimize the maximum control objectives in all possible scenarios, especially in the case of severe unbalanced fault. Finally, the effectiveness of the method is verified by using the MATLAB/SIMULINK simulation platform

    Energy-band engineering for improved charge retention in fully self-aligned double floating-gate single-electron memories

    Full text link
    We present a new fully self-aligned single-electron memory with a single pair of nano floating gates, made of different materials (Si and Ge). The energy barrier that prevents stored charge leakage is induced not only by quantum effects but also by the conduction-band offset that arises between Ge and Si. The dimension and position of each floating gate are well defined and controlled. The devices exhibit a long retention time and single-electron injection at room temperature

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S
    • …
    corecore